Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlex | Structured version Visualization version GIF version |
Description: The base set of a Hilbert space is a set. (Contributed by NM, 7-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlex.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
Ref | Expression |
---|---|
hlex | ⊢ 𝑋 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlex.1 | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | fvex 6113 | . 2 ⊢ (BaseSet‘𝑈) ∈ V | |
3 | 1, 2 | eqeltri 2684 | 1 ⊢ 𝑋 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 Vcvv 3173 ‘cfv 5804 BaseSetcba 26825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-sn 4126 df-pr 4128 df-uni 4373 df-iota 5768 df-fv 5812 |
This theorem is referenced by: htthlem 27158 h2hcau 27220 h2hlm 27221 axhilex-zf 27222 |
Copyright terms: Public domain | W3C validator |