Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hilbert1.1 Structured version   Visualization version   GIF version

Theorem hilbert1.1 31431
 Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Scott Fenton, 29-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
hilbert1.1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑄
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem hilbert1.1
Dummy variables 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1054 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃 ∈ (𝔼‘𝑁))
2 simp2 1055 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑄 ∈ (𝔼‘𝑁))
3 simp3 1056 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → 𝑃𝑄)
4 eqidd 2611 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → (𝑃Line𝑄) = (𝑃Line𝑄))
5 neeq1 2844 . . . . . . 7 (𝑝 = 𝑃 → (𝑝𝑞𝑃𝑞))
6 oveq1 6556 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝Line𝑞) = (𝑃Line𝑞))
76eqeq2d 2620 . . . . . . 7 (𝑝 = 𝑃 → ((𝑃Line𝑄) = (𝑝Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑞)))
85, 7anbi12d 743 . . . . . 6 (𝑝 = 𝑃 → ((𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ (𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞))))
9 neeq2 2845 . . . . . . 7 (𝑞 = 𝑄 → (𝑃𝑞𝑃𝑄))
10 oveq2 6557 . . . . . . . 8 (𝑞 = 𝑄 → (𝑃Line𝑞) = (𝑃Line𝑄))
1110eqeq2d 2620 . . . . . . 7 (𝑞 = 𝑄 → ((𝑃Line𝑄) = (𝑃Line𝑞) ↔ (𝑃Line𝑄) = (𝑃Line𝑄)))
129, 11anbi12d 743 . . . . . 6 (𝑞 = 𝑄 → ((𝑃𝑞 ∧ (𝑃Line𝑄) = (𝑃Line𝑞)) ↔ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))))
138, 12rspc2ev 3295 . . . . 5 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ (𝑃𝑄 ∧ (𝑃Line𝑄) = (𝑃Line𝑄))) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
141, 2, 3, 4, 13syl112anc 1322 . . . 4 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄) → ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
15 fveq2 6103 . . . . . 6 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
1615rexeqdv 3122 . . . . . 6 (𝑛 = 𝑁 → (∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1715, 16rexeqbidv 3130 . . . . 5 (𝑛 = 𝑁 → (∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)) ↔ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))))
1817rspcev 3282 . . . 4 ((𝑁 ∈ ℕ ∧ ∃𝑝 ∈ (𝔼‘𝑁)∃𝑞 ∈ (𝔼‘𝑁)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞))) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
1914, 18sylan2 490 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
20 ellines 31429 . . 3 ((𝑃Line𝑄) ∈ LinesEE ↔ ∃𝑛 ∈ ℕ ∃𝑝 ∈ (𝔼‘𝑛)∃𝑞 ∈ (𝔼‘𝑛)(𝑝𝑞 ∧ (𝑃Line𝑄) = (𝑝Line𝑞)))
2119, 20sylibr 223 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) ∈ LinesEE)
22 linerflx1 31426 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑃 ∈ (𝑃Line𝑄))
23 linerflx2 31428 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → 𝑄 ∈ (𝑃Line𝑄))
24 eleq2 2677 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑃𝑥𝑃 ∈ (𝑃Line𝑄)))
25 eleq2 2677 . . . 4 (𝑥 = (𝑃Line𝑄) → (𝑄𝑥𝑄 ∈ (𝑃Line𝑄)))
2624, 25anbi12d 743 . . 3 (𝑥 = (𝑃Line𝑄) → ((𝑃𝑥𝑄𝑥) ↔ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))))
2726rspcev 3282 . 2 (((𝑃Line𝑄) ∈ LinesEE ∧ (𝑃 ∈ (𝑃Line𝑄) ∧ 𝑄 ∈ (𝑃Line𝑄))) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
2821, 22, 23, 27syl12anc 1316 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → ∃𝑥 ∈ LinesEE (𝑃𝑥𝑄𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  ‘cfv 5804  (class class class)co 6549  ℕcn 10897  𝔼cee 25568  Linecline2 31411  LinesEEclines2 31413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-ee 25571  df-btwn 25572  df-cgr 25573  df-colinear 31316  df-line2 31414  df-lines2 31416 This theorem is referenced by:  linethrueu  31433
 Copyright terms: Public domain W3C validator