Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > heiborlem7 | Structured version Visualization version GIF version |
Description: Lemma for heibor 32790. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
Ref | Expression |
---|---|
heibor.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
heibor.3 | ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
heibor.4 | ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
heibor.5 | ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
heibor.6 | ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
heibor.7 | ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
heibor.8 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
heibor.9 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
heibor.10 | ⊢ (𝜑 → 𝐶𝐺0) |
heibor.11 | ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
heibor.12 | ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
Ref | Expression |
---|---|
heiborlem7 | ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 10971 | . . . . . . 7 ⊢ 3 ∈ ℝ | |
2 | 3pos 10991 | . . . . . . 7 ⊢ 0 < 3 | |
3 | 1, 2 | elrpii 11711 | . . . . . 6 ⊢ 3 ∈ ℝ+ |
4 | rpdivcl 11732 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+) | |
5 | 3, 4 | mpan2 703 | . . . . 5 ⊢ (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+) |
6 | 2re 10967 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 1lt2 11071 | . . . . . 6 ⊢ 1 < 2 | |
8 | expnlbnd 12856 | . . . . . 6 ⊢ (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) | |
9 | 6, 7, 8 | mp3an23 1408 | . . . . 5 ⊢ ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)) |
11 | 2nn 11062 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ | |
12 | nnnn0 11176 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
13 | nnexpcl 12735 | . . . . . . . . . . 11 ⊢ ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ) | |
14 | 11, 12, 13 | sylancr 694 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ) |
15 | 14 | nnrpd 11746 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+) |
16 | rpcn 11717 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ) | |
17 | rpne0 11724 | . . . . . . . . . 10 ⊢ ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0) | |
18 | 3cn 10972 | . . . . . . . . . . 11 ⊢ 3 ∈ ℂ | |
19 | divrec 10580 | . . . . . . . . . . 11 ⊢ ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) | |
20 | 18, 19 | mp3an1 1403 | . . . . . . . . . 10 ⊢ (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
21 | 16, 17, 20 | syl2anc 691 | . . . . . . . . 9 ⊢ ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
22 | 15, 21 | syl 17 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
23 | 22 | adantl 481 | . . . . . . 7 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘)))) |
24 | 23 | breq1d 4593 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟)) |
25 | 14 | nnrecred 10943 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ) |
26 | rpre 11715 | . . . . . . 7 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ) | |
27 | 1, 2 | pm3.2i 470 | . . . . . . . 8 ⊢ (3 ∈ ℝ ∧ 0 < 3) |
28 | ltmuldiv2 10776 | . . . . . . . 8 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) | |
29 | 27, 28 | mp3an3 1405 | . . . . . . 7 ⊢ (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
30 | 25, 26, 29 | syl2anr 494 | . . . . . 6 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
31 | 24, 30 | bitrd 267 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3))) |
32 | 31 | rexbidva 3031 | . . . 4 ⊢ (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))) |
33 | 10, 32 | mpbird 246 | . . 3 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
34 | fveq2 6103 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) | |
35 | oveq2 6557 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) | |
36 | 35 | oveq2d 6565 | . . . . . . . . 9 ⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
37 | 34, 36 | opeq12d 4348 | . . . . . . . 8 ⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
38 | heibor.12 | . . . . . . . 8 ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | |
39 | opex 4859 | . . . . . . . 8 ⊢ 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈ V | |
40 | 37, 38, 39 | fvmpt 6191 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
41 | 40 | fveq2d 6107 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
42 | fvex 6113 | . . . . . . 7 ⊢ (𝑆‘𝑘) ∈ V | |
43 | ovex 6577 | . . . . . . 7 ⊢ (3 / (2↑𝑘)) ∈ V | |
44 | 42, 43 | op2nd 7068 | . . . . . 6 ⊢ (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (3 / (2↑𝑘)) |
45 | 41, 44 | syl6eq 2660 | . . . . 5 ⊢ (𝑘 ∈ ℕ → (2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) |
46 | 45 | breq1d 4593 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟)) |
47 | 46 | rexbiia 3022 | . . 3 ⊢ (∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟) |
48 | 33, 47 | sylibr 223 | . 2 ⊢ (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟) |
49 | 48 | rgen 2906 | 1 ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 {cab 2596 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ∩ cin 3539 ⊆ wss 3540 ifcif 4036 𝒫 cpw 4108 〈cop 4131 ∪ cuni 4372 ∪ ciun 4455 class class class wbr 4583 {copab 4642 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 2nd c2nd 7058 Fincfn 7841 ℂcc 9813 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 < clt 9953 − cmin 10145 / cdiv 10563 ℕcn 10897 2c2 10947 3c3 10948 ℕ0cn0 11169 ℝ+crp 11708 seqcseq 12663 ↑cexp 12722 ballcbl 19554 MetOpencmopn 19557 CMetcms 22860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fl 12455 df-seq 12664 df-exp 12723 |
This theorem is referenced by: heiborlem8 32787 heiborlem9 32788 |
Copyright terms: Public domain | W3C validator |