Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > he0 | Structured version Visualization version GIF version |
Description: Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
Ref | Expression |
---|---|
he0 | ⊢ 𝐴 hereditary ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ima0 5400 | . . 3 ⊢ (𝐴 “ ∅) = ∅ | |
2 | 1 | eqimssi 3622 | . 2 ⊢ (𝐴 “ ∅) ⊆ ∅ |
3 | df-he 37087 | . 2 ⊢ (𝐴 hereditary ∅ ↔ (𝐴 “ ∅) ⊆ ∅) | |
4 | 2, 3 | mpbir 220 | 1 ⊢ 𝐴 hereditary ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3540 ∅c0 3874 “ cima 5041 hereditary whe 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-he 37087 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |