Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  he0 Structured version   Visualization version   GIF version

Theorem he0 37098
Description: Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.)
Assertion
Ref Expression
he0 𝐴 hereditary ∅

Proof of Theorem he0
StepHypRef Expression
1 ima0 5400 . . 3 (𝐴 “ ∅) = ∅
21eqimssi 3622 . 2 (𝐴 “ ∅) ⊆ ∅
3 df-he 37087 . 2 (𝐴 hereditary ∅ ↔ (𝐴 “ ∅) ⊆ ∅)
42, 3mpbir 220 1 𝐴 hereditary ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3540  c0 3874  cima 5041   hereditary whe 37086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-he 37087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator