Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1valc | Structured version Visualization version GIF version |
Description: Connect the value of the preliminary map from vectors to functionals 𝐼 to the hypothesis 𝐿 used by earlier theorems. Note: the 𝑋 ∈ (𝑉 ∖ { 0 }) hypothesis could be the more general 𝑋 ∈ 𝑉 but the former will be easier to use. TODO: use the 𝐼 function directly in those theorems, so this theorem becomes unnecessary? TODO: The hdmap1cbv 36110 is probably unnecessary, but it would mean different $d's later on. (Contributed by NM, 15-May-2015.) |
Ref | Expression |
---|---|
hdmap1valc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1valc.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1valc.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1valc.s | ⊢ − = (-g‘𝑈) |
hdmap1valc.o | ⊢ 0 = (0g‘𝑈) |
hdmap1valc.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1valc.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1valc.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1valc.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1valc.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1valc.j | ⊢ 𝐽 = (LSpan‘𝐶) |
hdmap1valc.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1valc.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1valc.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1valc.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1valc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1valc.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
hdmap1valc.l | ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
Ref | Expression |
---|---|
hdmap1valc | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1valc.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1valc.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1valc.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1valc.s | . . 3 ⊢ − = (-g‘𝑈) | |
5 | hdmap1valc.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1valc.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1valc.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1valc.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1valc.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
10 | hdmap1valc.q | . . 3 ⊢ 𝑄 = (0g‘𝐶) | |
11 | hdmap1valc.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | hdmap1valc.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | hdmap1valc.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
14 | hdmap1valc.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hdmap1valc.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3552 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
17 | hdmap1valc.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
18 | hdmap1valc.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18 | hdmap1val 36106 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
20 | hdmap1valc.l | . . . 4 ⊢ 𝐿 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
21 | 20 | hdmap1cbv 36110 | . . 3 ⊢ 𝐿 = (𝑤 ∈ V ↦ if((2nd ‘𝑤) = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑤)})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑤)) − (2nd ‘𝑤))})) = (𝐽‘{((2nd ‘(1st ‘𝑤))𝑅𝑔)}))))) |
22 | 10, 21, 16, 17, 18 | mapdhval 36031 | . 2 ⊢ (𝜑 → (𝐿‘〈𝑋, 𝐹, 𝑌〉) = if(𝑌 = 0 , 𝑄, (℩𝑔 ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑔}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝑔)}))))) |
23 | 19, 22 | eqtr4d 2647 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐿‘〈𝑋, 𝐹, 𝑌〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∖ cdif 3537 ifcif 4036 {csn 4125 〈cotp 4133 ↦ cmpt 4643 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 1st c1st 7057 2nd c2nd 7058 Basecbs 15695 0gc0g 15923 -gcsg 17247 LSpanclspn 18792 HLchlt 33655 LHypclh 34288 DVecHcdvh 35385 LCDualclcd 35893 mapdcmpd 35931 HDMap1chdma1 36099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-ot 4134 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-1st 7059 df-2nd 7060 df-hdmap1 36101 |
This theorem is referenced by: hdmap1cl 36112 hdmap1eq2 36113 hdmap1eq4N 36114 hdmap1eulem 36131 hdmap1eulemOLDN 36132 |
Copyright terms: Public domain | W3C validator |