Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbexOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of hbex 2142 as of 16-Oct-2021. (Contributed by NM, 12-Mar-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hbexOLD.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbexOLD | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1696 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | hbexOLD.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 2 | hbn 2131 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
4 | 3 | hbal 2023 | . . 3 ⊢ (∀𝑦 ¬ 𝜑 → ∀𝑥∀𝑦 ¬ 𝜑) |
5 | 4 | hbn 2131 | . 2 ⊢ (¬ ∀𝑦 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑦 ¬ 𝜑) |
6 | 1, 5 | hbxfrbi 1742 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1473 ∃wex 1695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-ex 1696 df-nf 1701 |
This theorem is referenced by: nfexOLD 2141 |
Copyright terms: Public domain | W3C validator |