MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   GIF version

Theorem hauspwdom 21114
Description: Simplify the cardinal 𝐴↑ℕ of hausmapdom 21113 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1 𝑋 = 𝐽
Assertion
Ref Expression
hauspwdom (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4 𝑋 = 𝐽
21hausmapdom 21113 . . 3 ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))
32adantr 480 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ))
4 simprr 792 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ℕ ≼ 𝐵)
5 1nn 10908 . . . . 5 1 ∈ ℕ
6 noel 3878 . . . . . . 7 ¬ 1 ∈ ∅
7 eleq2 2677 . . . . . . 7 (ℕ = ∅ → (1 ∈ ℕ ↔ 1 ∈ ∅))
86, 7mtbiri 316 . . . . . 6 (ℕ = ∅ → ¬ 1 ∈ ℕ)
98adantr 480 . . . . 5 ((ℕ = ∅ ∧ 𝐴 = ∅) → ¬ 1 ∈ ℕ)
105, 9mt2 190 . . . 4 ¬ (ℕ = ∅ ∧ 𝐴 = ∅)
11 mapdom2 8016 . . . 4 ((ℕ ≼ 𝐵 ∧ ¬ (ℕ = ∅ ∧ 𝐴 = ∅)) → (𝐴𝑚 ℕ) ≼ (𝐴𝑚 𝐵))
124, 10, 11sylancl 693 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴𝑚 ℕ) ≼ (𝐴𝑚 𝐵))
13 sdomdom 7869 . . . . . . 7 (𝐴 ≺ 2𝑜𝐴 ≼ 2𝑜)
1413adantl 481 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → 𝐴 ≼ 2𝑜)
15 mapdom1 8010 . . . . . 6 (𝐴 ≼ 2𝑜 → (𝐴𝑚 𝐵) ≼ (2𝑜𝑚 𝐵))
1614, 15syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → (𝐴𝑚 𝐵) ≼ (2𝑜𝑚 𝐵))
17 reldom 7847 . . . . . . . . 9 Rel ≼
1817brrelex2i 5083 . . . . . . . 8 (ℕ ≼ 𝐵𝐵 ∈ V)
1918ad2antll 761 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ V)
20 pw2eng 7951 . . . . . . 7 (𝐵 ∈ V → 𝒫 𝐵 ≈ (2𝑜𝑚 𝐵))
21 ensym 7891 . . . . . . 7 (𝒫 𝐵 ≈ (2𝑜𝑚 𝐵) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
2219, 20, 213syl 18 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
2322adantr 480 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵)
24 domentr 7901 . . . . 5 (((𝐴𝑚 𝐵) ≼ (2𝑜𝑚 𝐵) ∧ (2𝑜𝑚 𝐵) ≈ 𝒫 𝐵) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
2516, 23, 24syl2anc 691 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 𝐴 ≺ 2𝑜) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
26 onfin2 8037 . . . . . . . . 9 ω = (On ∩ Fin)
27 inss2 3796 . . . . . . . . 9 (On ∩ Fin) ⊆ Fin
2826, 27eqsstri 3598 . . . . . . . 8 ω ⊆ Fin
29 2onn 7607 . . . . . . . 8 2𝑜 ∈ ω
3028, 29sselii 3565 . . . . . . 7 2𝑜 ∈ Fin
31 simprl 790 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ≼ 𝒫 𝐵)
3217brrelexi 5082 . . . . . . . 8 (𝐴 ≼ 𝒫 𝐵𝐴 ∈ V)
3331, 32syl 17 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐴 ∈ V)
34 fidomtri 8702 . . . . . . 7 ((2𝑜 ∈ Fin ∧ 𝐴 ∈ V) → (2𝑜𝐴 ↔ ¬ 𝐴 ≺ 2𝑜))
3530, 33, 34sylancr 694 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (2𝑜𝐴 ↔ ¬ 𝐴 ≺ 2𝑜))
3635biimpar 501 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2𝑜) → 2𝑜𝐴)
37 numth3 9175 . . . . . . . . 9 (𝐵 ∈ V → 𝐵 ∈ dom card)
3819, 37syl 17 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → 𝐵 ∈ dom card)
3938adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → 𝐵 ∈ dom card)
40 nnenom 12641 . . . . . . . . . 10 ℕ ≈ ω
4140ensymi 7892 . . . . . . . . 9 ω ≈ ℕ
42 endomtr 7900 . . . . . . . . 9 ((ω ≈ ℕ ∧ ℕ ≼ 𝐵) → ω ≼ 𝐵)
4341, 4, 42sylancr 694 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ω ≼ 𝐵)
4443adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → ω ≼ 𝐵)
45 simpr 476 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → 2𝑜𝐴)
4631adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → 𝐴 ≼ 𝒫 𝐵)
47 mappwen 8818 . . . . . . 7 (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2𝑜𝐴𝐴 ≼ 𝒫 𝐵)) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)
4839, 44, 45, 46, 47syl22anc 1319 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → (𝐴𝑚 𝐵) ≈ 𝒫 𝐵)
49 endom 7868 . . . . . 6 ((𝐴𝑚 𝐵) ≈ 𝒫 𝐵 → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
5048, 49syl 17 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ 2𝑜𝐴) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
5136, 50syldan 486 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) ∧ ¬ 𝐴 ≺ 2𝑜) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
5225, 51pm2.61dan 828 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴𝑚 𝐵) ≼ 𝒫 𝐵)
53 domtr 7895 . . 3 (((𝐴𝑚 ℕ) ≼ (𝐴𝑚 𝐵) ∧ (𝐴𝑚 𝐵) ≼ 𝒫 𝐵) → (𝐴𝑚 ℕ) ≼ 𝒫 𝐵)
5412, 52, 53syl2anc 691 . 2 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → (𝐴𝑚 ℕ) ≼ 𝒫 𝐵)
55 domtr 7895 . 2 ((((cls‘𝐽)‘𝐴) ≼ (𝐴𝑚 ℕ) ∧ (𝐴𝑚 ℕ) ≼ 𝒫 𝐵) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
563, 54, 55syl2anc 691 1 (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  dom cdm 5038  Oncon0 5640  cfv 5804  (class class class)co 6549  ωcom 6957  2𝑜c2o 7441  𝑚 cmap 7744  cen 7838  cdom 7839  csdm 7840  Fincfn 7841  cardccrd 8644  1c1 9816  cn 10897  clsccl 20632  Hauscha 20922  1st𝜔c1stc 21050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-top 20521  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-lm 20843  df-haus 20929  df-1stc 21052
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator