Step | Hyp | Ref
| Expression |
1 | | haustop 20945 |
. . 3
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Top) |
2 | 1 | adantr 480 |
. 2
⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ Top) |
3 | | eqid 2610 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | | eqid 2610 |
. . . . . 6
⊢ {𝑧 ∈ 𝐽 ∣ ∃𝑣 ∈ 𝐽 (𝑦 ∈ 𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ (∪ 𝐽 ∖ 𝑧))} = {𝑧 ∈ 𝐽 ∣ ∃𝑣 ∈ 𝐽 (𝑦 ∈ 𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ (∪ 𝐽 ∖ 𝑧))} |
5 | | simpll 786 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝐽 ∈ Haus) |
6 | | difssd 3700 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → (∪ 𝐽 ∖ 𝑥) ⊆ ∪ 𝐽) |
7 | | simplr 788 |
. . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝐽 ∈ Comp) |
8 | 1 | ad2antrr 758 |
. . . . . . . 8
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝐽 ∈ Top) |
9 | | simprl 790 |
. . . . . . . 8
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝑥 ∈ 𝐽) |
10 | 3 | opncld 20647 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
11 | 8, 9, 10 | syl2anc 691 |
. . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
12 | | cmpcld 21015 |
. . . . . . 7
⊢ ((𝐽 ∈ Comp ∧ (∪ 𝐽
∖ 𝑥) ∈
(Clsd‘𝐽)) →
(𝐽 ↾t
(∪ 𝐽 ∖ 𝑥)) ∈ Comp) |
13 | 7, 11, 12 | syl2anc 691 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → (𝐽 ↾t (∪ 𝐽
∖ 𝑥)) ∈
Comp) |
14 | | simprr 792 |
. . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ 𝑥) |
15 | | elssuni 4403 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) |
16 | 15 | ad2antrl 760 |
. . . . . . . 8
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝑥 ⊆ ∪ 𝐽) |
17 | | dfss4 3820 |
. . . . . . . 8
⊢ (𝑥 ⊆ ∪ 𝐽
↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
18 | 16, 17 | sylib 207 |
. . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝑥)) = 𝑥) |
19 | 14, 18 | eleqtrrd 2691 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → 𝑦 ∈ (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝑥))) |
20 | 3, 4, 5, 6, 13, 19 | hauscmplem 21019 |
. . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝑥)))) |
21 | 18 | sseq2d 3596 |
. . . . . . 7
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → (((cls‘𝐽)‘𝑢) ⊆ (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝑥)) ↔
((cls‘𝐽)‘𝑢) ⊆ 𝑥)) |
22 | 21 | anbi2d 736 |
. . . . . 6
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → ((𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝑥))) ↔ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) |
23 | 22 | rexbidv 3034 |
. . . . 5
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → (∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ (∪ 𝐽 ∖ (∪ 𝐽
∖ 𝑥))) ↔
∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) |
24 | 20, 23 | mpbid 221 |
. . . 4
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → ∃𝑢 ∈ 𝐽 (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)) |
25 | 8 | adantr 480 |
. . . . . . 7
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Top) |
26 | | simprl 790 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ∈ 𝐽) |
27 | | simprrl 800 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑦 ∈ 𝑢) |
28 | | opnneip 20733 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽 ∧ 𝑦 ∈ 𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) |
29 | 25, 26, 27, 28 | syl3anc 1318 |
. . . . . . 7
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) |
30 | | elssuni 4403 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐽 → 𝑢 ⊆ ∪ 𝐽) |
31 | 30 | ad2antrl 760 |
. . . . . . . 8
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ⊆ ∪ 𝐽) |
32 | 3 | sscls 20670 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ 𝑢 ⊆
((cls‘𝐽)‘𝑢)) |
33 | 25, 31, 32 | syl2anc 691 |
. . . . . . 7
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢)) |
34 | 3 | clsss3 20673 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽) |
35 | 25, 31, 34 | syl2anc 691 |
. . . . . . 7
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽) |
36 | 3 | ssnei2 20730 |
. . . . . . 7
⊢ (((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) ∧ (𝑢 ⊆ ((cls‘𝐽)‘𝑢) ∧ ((cls‘𝐽)‘𝑢) ⊆ ∪ 𝐽)) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦})) |
37 | 25, 29, 33, 35, 36 | syl22anc 1319 |
. . . . . 6
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦})) |
38 | | simprrr 801 |
. . . . . . 7
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝑥) |
39 | | vex 3176 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
40 | 39 | elpw2 4755 |
. . . . . . 7
⊢
(((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥) |
41 | 38, 40 | sylibr 223 |
. . . . . 6
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥) |
42 | 37, 41 | elind 3760 |
. . . . 5
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)) |
43 | 7 | adantr 480 |
. . . . . 6
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Comp) |
44 | 3 | clscld 20661 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑢 ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) |
45 | 25, 31, 44 | syl2anc 691 |
. . . . . 6
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) |
46 | | cmpcld 21015 |
. . . . . 6
⊢ ((𝐽 ∈ Comp ∧
((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐽 ↾t ((cls‘𝐽)‘𝑢)) ∈ Comp) |
47 | 43, 45, 46 | syl2anc 691 |
. . . . 5
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → (𝐽 ↾t ((cls‘𝐽)‘𝑢)) ∈ Comp) |
48 | | oveq2 6557 |
. . . . . . 7
⊢ (𝑣 = ((cls‘𝐽)‘𝑢) → (𝐽 ↾t 𝑣) = (𝐽 ↾t ((cls‘𝐽)‘𝑢))) |
49 | 48 | eleq1d 2672 |
. . . . . 6
⊢ (𝑣 = ((cls‘𝐽)‘𝑢) → ((𝐽 ↾t 𝑣) ∈ Comp ↔ (𝐽 ↾t ((cls‘𝐽)‘𝑢)) ∈ Comp)) |
50 | 49 | rspcev 3282 |
. . . . 5
⊢
((((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽 ↾t ((cls‘𝐽)‘𝑢)) ∈ Comp) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑣) ∈ Comp) |
51 | 42, 47, 50 | syl2anc 691 |
. . . 4
⊢ ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) ∧ (𝑢 ∈ 𝐽 ∧ (𝑦 ∈ 𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑣) ∈ Comp) |
52 | 24, 51 | rexlimddv 3017 |
. . 3
⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑣) ∈ Comp) |
53 | 52 | ralrimivva 2954 |
. 2
⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) →
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑣) ∈ Comp) |
54 | | isnlly 21082 |
. 2
⊢ (𝐽 ∈ 𝑛-Locally Comp
↔ (𝐽 ∈ Top ∧
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽 ↾t 𝑣) ∈ Comp)) |
55 | 2, 53, 54 | sylanbrc 695 |
1
⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally
Comp) |