MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausllycmp Structured version   Visualization version   GIF version

Theorem hausllycmp 21107
Description: A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
hausllycmp ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp)

Proof of Theorem hausllycmp
Dummy variables 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 haustop 20945 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Top)
21adantr 480 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ Top)
3 eqid 2610 . . . . . 6 𝐽 = 𝐽
4 eqid 2610 . . . . . 6 {𝑧𝐽 ∣ ∃𝑣𝐽 (𝑦𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ ( 𝐽𝑧))} = {𝑧𝐽 ∣ ∃𝑣𝐽 (𝑦𝑣 ∧ ((cls‘𝐽)‘𝑣) ⊆ ( 𝐽𝑧))}
5 simpll 786 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Haus)
6 difssd 3700 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽𝑥) ⊆ 𝐽)
7 simplr 788 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Comp)
81ad2antrr 758 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
9 simprl 790 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
103opncld 20647 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
118, 9, 10syl2anc 691 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
12 cmpcld 21015 . . . . . . 7 ((𝐽 ∈ Comp ∧ ( 𝐽𝑥) ∈ (Clsd‘𝐽)) → (𝐽t ( 𝐽𝑥)) ∈ Comp)
137, 11, 12syl2anc 691 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (𝐽t ( 𝐽𝑥)) ∈ Comp)
14 simprr 792 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
15 elssuni 4403 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
1615ad2antrl 760 . . . . . . . 8 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 𝐽)
17 dfss4 3820 . . . . . . . 8 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
1816, 17sylib 207 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
1914, 18eleqtrrd 2691 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ ( 𝐽 ∖ ( 𝐽𝑥)))
203, 4, 5, 6, 13, 19hauscmplem 21019 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))))
2118sseq2d 3596 . . . . . . 7 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥)) ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))
2221anbi2d 736 . . . . . 6 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ((𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))) ↔ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)))
2322rexbidv 3034 . . . . 5 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → (∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ ( 𝐽 ∖ ( 𝐽𝑥))) ↔ ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)))
2420, 23mpbid 221 . . . 4 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑢𝐽 (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))
258adantr 480 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Top)
26 simprl 790 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢𝐽)
27 simprrl 800 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑦𝑢)
28 opnneip 20733 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢𝐽𝑦𝑢) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
2925, 26, 27, 28syl3anc 1318 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ∈ ((nei‘𝐽)‘{𝑦}))
30 elssuni 4403 . . . . . . . . 9 (𝑢𝐽𝑢 𝐽)
3130ad2antrl 760 . . . . . . . 8 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 𝐽)
323sscls 20670 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
3325, 31, 32syl2anc 691 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝑢 ⊆ ((cls‘𝐽)‘𝑢))
343clsss3 20673 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
3525, 31, 34syl2anc 691 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝐽)
363ssnei2 20730 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑢 ∈ ((nei‘𝐽)‘{𝑦})) ∧ (𝑢 ⊆ ((cls‘𝐽)‘𝑢) ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝐽)) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦}))
3725, 29, 33, 35, 36syl22anc 1319 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ ((nei‘𝐽)‘{𝑦}))
38 simprrr 801 . . . . . . 7 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ⊆ 𝑥)
39 vex 3176 . . . . . . . 8 𝑥 ∈ V
4039elpw2 4755 . . . . . . 7 (((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥 ↔ ((cls‘𝐽)‘𝑢) ⊆ 𝑥)
4138, 40sylibr 223 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ 𝒫 𝑥)
4237, 41elind 3760 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥))
437adantr 480 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → 𝐽 ∈ Comp)
443clscld 20661 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑢 𝐽) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
4525, 31, 44syl2anc 691 . . . . . 6 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽))
46 cmpcld 21015 . . . . . 6 ((𝐽 ∈ Comp ∧ ((cls‘𝐽)‘𝑢) ∈ (Clsd‘𝐽)) → (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp)
4743, 45, 46syl2anc 691 . . . . 5 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp)
48 oveq2 6557 . . . . . . 7 (𝑣 = ((cls‘𝐽)‘𝑢) → (𝐽t 𝑣) = (𝐽t ((cls‘𝐽)‘𝑢)))
4948eleq1d 2672 . . . . . 6 (𝑣 = ((cls‘𝐽)‘𝑢) → ((𝐽t 𝑣) ∈ Comp ↔ (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp))
5049rspcev 3282 . . . . 5 ((((cls‘𝐽)‘𝑢) ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥) ∧ (𝐽t ((cls‘𝐽)‘𝑢)) ∈ Comp) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5142, 47, 50syl2anc 691 . . . 4 ((((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) ∧ (𝑢𝐽 ∧ (𝑦𝑢 ∧ ((cls‘𝐽)‘𝑢) ⊆ 𝑥))) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5224, 51rexlimddv 3017 . . 3 (((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) ∧ (𝑥𝐽𝑦𝑥)) → ∃𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
5352ralrimivva 2954 . 2 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → ∀𝑥𝐽𝑦𝑥𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp)
54 isnlly 21082 . 2 (𝐽 ∈ 𝑛-Locally Comp ↔ (𝐽 ∈ Top ∧ ∀𝑥𝐽𝑦𝑥𝑣 ∈ (((nei‘𝐽)‘{𝑦}) ∩ 𝒫 𝑥)(𝐽t 𝑣) ∈ Comp))
552, 53, 54sylanbrc 695 1 ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  cdif 3537  cin 3539  wss 3540  𝒫 cpw 4108  {csn 4125   cuni 4372  cfv 5804  (class class class)co 6549  t crest 15904  Topctop 20517  Clsdccld 20630  clsccl 20632  neicnei 20711  Hauscha 20922  Compccmp 20999  𝑛-Locally cnlly 21078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-fin 7845  df-fi 8200  df-rest 15906  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-cld 20633  df-cls 20635  df-nei 20712  df-haus 20929  df-cmp 21000  df-nlly 21080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator