MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimlem Structured version   Visualization version   GIF version

Theorem hausflimlem 21593
Description: If 𝐴 and 𝐵 are both limits of the same filter, then all neighborhoods of 𝐴 and 𝐵 intersect. (Contributed by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimlem (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → (𝑈𝑉) ≠ ∅)

Proof of Theorem hausflimlem
StepHypRef Expression
1 simp1l 1078 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐴 ∈ (𝐽 fLim 𝐹))
2 eqid 2610 . . . 4 𝐽 = 𝐽
32flimfil 21583 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
41, 3syl 17 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐹 ∈ (Fil‘ 𝐽))
5 flimtop 21579 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
61, 5syl 17 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐽 ∈ Top)
7 simp2l 1080 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈𝐽)
8 simp3l 1082 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐴𝑈)
9 opnneip 20733 . . . 4 ((𝐽 ∈ Top ∧ 𝑈𝐽𝐴𝑈) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴}))
106, 7, 8, 9syl3anc 1318 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴}))
11 flimnei 21581 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑈𝐹)
121, 10, 11syl2anc 691 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈𝐹)
13 simp1r 1079 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐵 ∈ (𝐽 fLim 𝐹))
14 simp2r 1081 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉𝐽)
15 simp3r 1083 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐵𝑉)
16 opnneip 20733 . . . 4 ((𝐽 ∈ Top ∧ 𝑉𝐽𝐵𝑉) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵}))
176, 14, 15, 16syl3anc 1318 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵}))
18 flimnei 21581 . . 3 ((𝐵 ∈ (𝐽 fLim 𝐹) ∧ 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) → 𝑉𝐹)
1913, 17, 18syl2anc 691 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉𝐹)
20 filinn0 21474 . 2 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑈𝐹𝑉𝐹) → (𝑈𝑉) ≠ ∅)
214, 12, 19, 20syl3anc 1318 1 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → (𝑈𝑉) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977  wne 2780  cin 3539  c0 3874  {csn 4125   cuni 4372  cfv 5804  (class class class)co 6549  Topctop 20517  neicnei 20711  Filcfil 21459   fLim cflim 21548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-nei 20712  df-fil 21460  df-flim 21553
This theorem is referenced by:  hausflimi  21594
  Copyright terms: Public domain W3C validator