MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashkf Structured version   Visualization version   GIF version

Theorem hashkf 12981
Description: The finite part of the size function maps all finite sets to their cardinality, as members of 0. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
hashgval.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
hashkf.2 𝐾 = (𝐺 ∘ card)
Assertion
Ref Expression
hashkf 𝐾:Fin⟶ℕ0

Proof of Theorem hashkf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frfnom 7417 . . . . . . 7 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω
2 hashgval.1 . . . . . . . 8 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
32fneq1i 5899 . . . . . . 7 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn ω)
41, 3mpbir 220 . . . . . 6 𝐺 Fn ω
5 fnfun 5902 . . . . . 6 (𝐺 Fn ω → Fun 𝐺)
64, 5ax-mp 5 . . . . 5 Fun 𝐺
7 cardf2 8652 . . . . . 6 card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On
8 ffun 5961 . . . . . 6 (card:{𝑦 ∣ ∃𝑥 ∈ On 𝑥𝑦}⟶On → Fun card)
97, 8ax-mp 5 . . . . 5 Fun card
10 funco 5842 . . . . 5 ((Fun 𝐺 ∧ Fun card) → Fun (𝐺 ∘ card))
116, 9, 10mp2an 704 . . . 4 Fun (𝐺 ∘ card)
12 dmco 5560 . . . . 5 dom (𝐺 ∘ card) = (card “ dom 𝐺)
13 fndm 5904 . . . . . . 7 (𝐺 Fn ω → dom 𝐺 = ω)
144, 13ax-mp 5 . . . . . 6 dom 𝐺 = ω
1514imaeq2i 5383 . . . . 5 (card “ dom 𝐺) = (card “ ω)
16 funfn 5833 . . . . . . . . 9 (Fun card ↔ card Fn dom card)
179, 16mpbi 219 . . . . . . . 8 card Fn dom card
18 elpreima 6245 . . . . . . . 8 (card Fn dom card → (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω)))
1917, 18ax-mp 5 . . . . . . 7 (𝑦 ∈ (card “ ω) ↔ (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
20 id 22 . . . . . . . . . 10 ((card‘𝑦) ∈ ω → (card‘𝑦) ∈ ω)
21 cardid2 8662 . . . . . . . . . . 11 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
2221ensymd 7893 . . . . . . . . . 10 (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦))
23 breq2 4587 . . . . . . . . . . 11 (𝑥 = (card‘𝑦) → (𝑦𝑥𝑦 ≈ (card‘𝑦)))
2423rspcev 3282 . . . . . . . . . 10 (((card‘𝑦) ∈ ω ∧ 𝑦 ≈ (card‘𝑦)) → ∃𝑥 ∈ ω 𝑦𝑥)
2520, 22, 24syl2anr 494 . . . . . . . . 9 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → ∃𝑥 ∈ ω 𝑦𝑥)
26 isfi 7865 . . . . . . . . 9 (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦𝑥)
2725, 26sylibr 223 . . . . . . . 8 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) → 𝑦 ∈ Fin)
28 finnum 8657 . . . . . . . . 9 (𝑦 ∈ Fin → 𝑦 ∈ dom card)
29 ficardom 8670 . . . . . . . . 9 (𝑦 ∈ Fin → (card‘𝑦) ∈ ω)
3028, 29jca 553 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω))
3127, 30impbii 198 . . . . . . 7 ((𝑦 ∈ dom card ∧ (card‘𝑦) ∈ ω) ↔ 𝑦 ∈ Fin)
3219, 31bitri 263 . . . . . 6 (𝑦 ∈ (card “ ω) ↔ 𝑦 ∈ Fin)
3332eqriv 2607 . . . . 5 (card “ ω) = Fin
3412, 15, 333eqtri 2636 . . . 4 dom (𝐺 ∘ card) = Fin
35 df-fn 5807 . . . 4 ((𝐺 ∘ card) Fn Fin ↔ (Fun (𝐺 ∘ card) ∧ dom (𝐺 ∘ card) = Fin))
3611, 34, 35mpbir2an 957 . . 3 (𝐺 ∘ card) Fn Fin
37 hashkf.2 . . . 4 𝐾 = (𝐺 ∘ card)
3837fneq1i 5899 . . 3 (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn Fin)
3936, 38mpbir 220 . 2 𝐾 Fn Fin
4037fveq1i 6104 . . . . 5 (𝐾𝑦) = ((𝐺 ∘ card)‘𝑦)
41 fvco 6184 . . . . . 6 ((Fun card ∧ 𝑦 ∈ dom card) → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
429, 28, 41sylancr 694 . . . . 5 (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦)))
4340, 42syl5eq 2656 . . . 4 (𝑦 ∈ Fin → (𝐾𝑦) = (𝐺‘(card‘𝑦)))
442hashgf1o 12632 . . . . . . 7 𝐺:ω–1-1-onto→ℕ0
45 f1of 6050 . . . . . . 7 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
4644, 45ax-mp 5 . . . . . 6 𝐺:ω⟶ℕ0
4746ffvelrni 6266 . . . . 5 ((card‘𝑦) ∈ ω → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4829, 47syl 17 . . . 4 (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈ ℕ0)
4943, 48eqeltrd 2688 . . 3 (𝑦 ∈ Fin → (𝐾𝑦) ∈ ℕ0)
5049rgen 2906 . 2 𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0
51 ffnfv 6295 . 2 (𝐾:Fin⟶ℕ0 ↔ (𝐾 Fn Fin ∧ ∀𝑦 ∈ Fin (𝐾𝑦) ∈ ℕ0))
5239, 50, 51mpbir2an 957 1 𝐾:Fin⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  cres 5040  cima 5041  ccom 5042  Oncon0 5640  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  ωcom 6957  reccrdg 7392  cen 7838  Fincfn 7841  cardccrd 8644  0cc0 9815  1c1 9816   + caddc 9818  0cn0 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564
This theorem is referenced by:  hashgval  12982  hashinf  12984  hashfxnn0  12986  hashfOLD  12988
  Copyright terms: Public domain W3C validator