Step | Hyp | Ref
| Expression |
1 | | frfnom 7417 |
. . . . . . 7
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) Fn ω |
2 | | hashgval.1 |
. . . . . . . 8
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
3 | 2 | fneq1i 5899 |
. . . . . . 7
⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) Fn
ω) |
4 | 1, 3 | mpbir 220 |
. . . . . 6
⊢ 𝐺 Fn ω |
5 | | fnfun 5902 |
. . . . . 6
⊢ (𝐺 Fn ω → Fun 𝐺) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ Fun 𝐺 |
7 | | cardf2 8652 |
. . . . . 6
⊢
card:{𝑦 ∣
∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On |
8 | | ffun 5961 |
. . . . . 6
⊢
(card:{𝑦 ∣
∃𝑥 ∈ On 𝑥 ≈ 𝑦}⟶On → Fun card) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢ Fun
card |
10 | | funco 5842 |
. . . . 5
⊢ ((Fun
𝐺 ∧ Fun card) →
Fun (𝐺 ∘
card)) |
11 | 6, 9, 10 | mp2an 704 |
. . . 4
⊢ Fun
(𝐺 ∘
card) |
12 | | dmco 5560 |
. . . . 5
⊢ dom
(𝐺 ∘ card) = (◡card “ dom 𝐺) |
13 | | fndm 5904 |
. . . . . . 7
⊢ (𝐺 Fn ω → dom 𝐺 = ω) |
14 | 4, 13 | ax-mp 5 |
. . . . . 6
⊢ dom 𝐺 = ω |
15 | 14 | imaeq2i 5383 |
. . . . 5
⊢ (◡card “ dom 𝐺) = (◡card “ ω) |
16 | | funfn 5833 |
. . . . . . . . 9
⊢ (Fun card
↔ card Fn dom card) |
17 | 9, 16 | mpbi 219 |
. . . . . . . 8
⊢ card Fn
dom card |
18 | | elpreima 6245 |
. . . . . . . 8
⊢ (card Fn
dom card → (𝑦 ∈
(◡card “ ω) ↔ (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω))) |
19 | 17, 18 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ (◡card “ ω) ↔ (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω)) |
20 | | id 22 |
. . . . . . . . . 10
⊢
((card‘𝑦)
∈ ω → (card‘𝑦) ∈ ω) |
21 | | cardid2 8662 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ dom card →
(card‘𝑦) ≈
𝑦) |
22 | 21 | ensymd 7893 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card → 𝑦 ≈ (card‘𝑦)) |
23 | | breq2 4587 |
. . . . . . . . . . 11
⊢ (𝑥 = (card‘𝑦) → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ (card‘𝑦))) |
24 | 23 | rspcev 3282 |
. . . . . . . . . 10
⊢
(((card‘𝑦)
∈ ω ∧ 𝑦
≈ (card‘𝑦))
→ ∃𝑥 ∈
ω 𝑦 ≈ 𝑥) |
25 | 20, 22, 24 | syl2anr 494 |
. . . . . . . . 9
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) → ∃𝑥
∈ ω 𝑦 ≈
𝑥) |
26 | | isfi 7865 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin ↔ ∃𝑥 ∈ ω 𝑦 ≈ 𝑥) |
27 | 25, 26 | sylibr 223 |
. . . . . . . 8
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) → 𝑦 ∈
Fin) |
28 | | finnum 8657 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin → 𝑦 ∈ dom
card) |
29 | | ficardom 8670 |
. . . . . . . . 9
⊢ (𝑦 ∈ Fin →
(card‘𝑦) ∈
ω) |
30 | 28, 29 | jca 553 |
. . . . . . . 8
⊢ (𝑦 ∈ Fin → (𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω)) |
31 | 27, 30 | impbii 198 |
. . . . . . 7
⊢ ((𝑦 ∈ dom card ∧
(card‘𝑦) ∈
ω) ↔ 𝑦 ∈
Fin) |
32 | 19, 31 | bitri 263 |
. . . . . 6
⊢ (𝑦 ∈ (◡card “ ω) ↔ 𝑦 ∈ Fin) |
33 | 32 | eqriv 2607 |
. . . . 5
⊢ (◡card “ ω) = Fin |
34 | 12, 15, 33 | 3eqtri 2636 |
. . . 4
⊢ dom
(𝐺 ∘ card) =
Fin |
35 | | df-fn 5807 |
. . . 4
⊢ ((𝐺 ∘ card) Fn Fin ↔
(Fun (𝐺 ∘ card) ∧
dom (𝐺 ∘ card) =
Fin)) |
36 | 11, 34, 35 | mpbir2an 957 |
. . 3
⊢ (𝐺 ∘ card) Fn
Fin |
37 | | hashkf.2 |
. . . 4
⊢ 𝐾 = (𝐺 ∘ card) |
38 | 37 | fneq1i 5899 |
. . 3
⊢ (𝐾 Fn Fin ↔ (𝐺 ∘ card) Fn
Fin) |
39 | 36, 38 | mpbir 220 |
. 2
⊢ 𝐾 Fn Fin |
40 | 37 | fveq1i 6104 |
. . . . 5
⊢ (𝐾‘𝑦) = ((𝐺 ∘ card)‘𝑦) |
41 | | fvco 6184 |
. . . . . 6
⊢ ((Fun
card ∧ 𝑦 ∈ dom
card) → ((𝐺 ∘
card)‘𝑦) = (𝐺‘(card‘𝑦))) |
42 | 9, 28, 41 | sylancr 694 |
. . . . 5
⊢ (𝑦 ∈ Fin → ((𝐺 ∘ card)‘𝑦) = (𝐺‘(card‘𝑦))) |
43 | 40, 42 | syl5eq 2656 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐾‘𝑦) = (𝐺‘(card‘𝑦))) |
44 | 2 | hashgf1o 12632 |
. . . . . . 7
⊢ 𝐺:ω–1-1-onto→ℕ0 |
45 | | f1of 6050 |
. . . . . . 7
⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) |
46 | 44, 45 | ax-mp 5 |
. . . . . 6
⊢ 𝐺:ω⟶ℕ0 |
47 | 46 | ffvelrni 6266 |
. . . . 5
⊢
((card‘𝑦)
∈ ω → (𝐺‘(card‘𝑦)) ∈
ℕ0) |
48 | 29, 47 | syl 17 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐺‘(card‘𝑦)) ∈
ℕ0) |
49 | 43, 48 | eqeltrd 2688 |
. . 3
⊢ (𝑦 ∈ Fin → (𝐾‘𝑦) ∈
ℕ0) |
50 | 49 | rgen 2906 |
. 2
⊢
∀𝑦 ∈ Fin
(𝐾‘𝑦) ∈ ℕ0 |
51 | | ffnfv 6295 |
. 2
⊢ (𝐾:Fin⟶ℕ0
↔ (𝐾 Fn Fin ∧
∀𝑦 ∈ Fin (𝐾‘𝑦) ∈
ℕ0)) |
52 | 39, 50, 51 | mpbir2an 957 |
1
⊢ 𝐾:Fin⟶ℕ0 |