Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfzo Structured version   Visualization version   GIF version

Theorem hashfzo 13076
 Description: Cardinality of a half-open set of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
hashfzo (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzo
StepHypRef Expression
1 eluzel2 11568 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
21zcnd 11359 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
32subidd 10259 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴𝐴) = 0)
4 fzo0 12361 . . . . . 6 (𝐴..^𝐴) = ∅
54fveq2i 6106 . . . . 5 (#‘(𝐴..^𝐴)) = (#‘∅)
6 hash0 13019 . . . . 5 (#‘∅) = 0
75, 6eqtri 2632 . . . 4 (#‘(𝐴..^𝐴)) = 0
83, 7syl6reqr 2663 . . 3 (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐴)) = (𝐴𝐴))
9 oveq2 6557 . . . . 5 (𝐵 = 𝐴 → (𝐴..^𝐵) = (𝐴..^𝐴))
109fveq2d 6107 . . . 4 (𝐵 = 𝐴 → (#‘(𝐴..^𝐵)) = (#‘(𝐴..^𝐴)))
11 oveq1 6556 . . . 4 (𝐵 = 𝐴 → (𝐵𝐴) = (𝐴𝐴))
1210, 11eqeq12d 2625 . . 3 (𝐵 = 𝐴 → ((#‘(𝐴..^𝐵)) = (𝐵𝐴) ↔ (#‘(𝐴..^𝐴)) = (𝐴𝐴)))
138, 12syl5ibrcom 236 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 → (#‘(𝐴..^𝐵)) = (𝐵𝐴)))
14 eluzelz 11573 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
15 fzoval 12340 . . . . . . 7 (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1614, 15syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1)))
1716fveq2d 6107 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (#‘(𝐴...(𝐵 − 1))))
1817adantr 480 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (#‘(𝐴..^𝐵)) = (#‘(𝐴...(𝐵 − 1))))
19 hashfz 13074 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (#‘(𝐴...(𝐵 − 1))) = (((𝐵 − 1) − 𝐴) + 1))
2014zcnd 11359 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
21 1cnd 9935 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
2220, 21, 2sub32d 10303 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) − 𝐴) = ((𝐵𝐴) − 1))
2322oveq1d 6564 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (((𝐵𝐴) − 1) + 1))
2420, 2subcld 10271 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
25 ax-1cn 9873 . . . . . . 7 1 ∈ ℂ
26 npcan 10169 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2724, 25, 26sylancl 693 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (((𝐵𝐴) − 1) + 1) = (𝐵𝐴))
2823, 27eqtrd 2644 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (((𝐵 − 1) − 𝐴) + 1) = (𝐵𝐴))
2919, 28sylan9eqr 2666 . . . 4 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (#‘(𝐴...(𝐵 − 1))) = (𝐵𝐴))
3018, 29eqtrd 2644 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ (𝐵 − 1) ∈ (ℤ𝐴)) → (#‘(𝐴..^𝐵)) = (𝐵𝐴))
3130ex 449 . 2 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − 1) ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (𝐵𝐴)))
32 uzm1 11594 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴 ∨ (𝐵 − 1) ∈ (ℤ𝐴)))
3313, 31, 32mpjaod 395 1 (𝐵 ∈ (ℤ𝐴) → (#‘(𝐴..^𝐵)) = (𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∅c0 3874  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   − cmin 10145  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980 This theorem is referenced by:  hashfzo0  13077  pntlemr  25091
 Copyright terms: Public domain W3C validator