Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfxnn0 Structured version   Visualization version   GIF version

Theorem hashfxnn0 12986
 Description: The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by AV, 10-Dec-2020.)
Assertion
Ref Expression
hashfxnn0 #:V⟶ℕ0*

Proof of Theorem hashfxnn0
StepHypRef Expression
1 eqid 2610 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
2 eqid 2610 . . . . 5 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
31, 2hashkf 12981 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0
4 pnfex 9972 . . . . 5 +∞ ∈ V
54fconst 6004 . . . 4 ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}
63, 5pm3.2i 470 . . 3 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞})
7 disjdif 3992 . . 3 (Fin ∩ (V ∖ Fin)) = ∅
8 fun 5979 . . 3 (((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card):Fin⟶ℕ0 ∧ ((V ∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞}) ∧ (Fin ∩ (V ∖ Fin)) = ∅) → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}))
96, 7, 8mp2an 704 . 2 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞})
10 df-hash 12980 . . . 4 # = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
11 eqid 2610 . . . 4 V = V
12 df-xnn0 11241 . . . 4 0* = (ℕ0 ∪ {+∞})
13 feq123 5948 . . . 4 ((# = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})) ∧ V = V ∧ ℕ0* = (ℕ0 ∪ {+∞})) → (#:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞})))
1410, 11, 12, 13mp3an 1416 . . 3 (#:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))
15 unvdif 3994 . . . 4 (Fin ∪ (V ∖ Fin)) = V
1615feq2i 5950 . . 3 ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}) ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):V⟶(ℕ0 ∪ {+∞}))
1714, 16bitr4i 266 . 2 (#:V⟶ℕ0* ↔ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞})):(Fin ∪ (V ∖ Fin))⟶(ℕ0 ∪ {+∞}))
189, 17mpbir 220 1 #:V⟶ℕ0*
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475  Vcvv 3173   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  {csn 4125   ↦ cmpt 4643   × cxp 5036   ↾ cres 5040   ∘ ccom 5042  ⟶wf 5800  (class class class)co 6549  ωcom 6957  reccrdg 7392  Fincfn 7841  cardccrd 8644  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  ℕ0cn0 11169  ℕ0*cxnn0 11240  #chash 12979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-hash 12980 This theorem is referenced by:  hashf  12987  hashxnn0  12989
 Copyright terms: Public domain W3C validator