Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashecclwwlksn1 Structured version   Visualization version   GIF version

Theorem hashecclwwlksn1 41261
 Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number is 1 or equals this length. (Contributed by Alexander van der Vekens, 17-Jun-2018.) (Revised by AV, 1-May-2021.)
Hypotheses
Ref Expression
erclwwlksn.w 𝑊 = (𝑁 ClWWalkSN 𝐺)
erclwwlksn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
hashecclwwlksn1 ((𝑁 ∈ ℙ ∧ 𝑈 ∈ (𝑊 / )) → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡   𝑛,𝑊   𝑛,𝐺,𝑢   𝑈,𝑛,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝑈(𝑡)   𝐺(𝑡)

Proof of Theorem hashecclwwlksn1
Dummy variables 𝑥 𝑦 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erclwwlksn.w . . . . 5 𝑊 = (𝑁 ClWWalkSN 𝐺)
2 erclwwlksn.r . . . . 5 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2eclclwwlksn1 41259 . . . 4 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) ↔ ∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
4 rabeq 3166 . . . . . . . . . 10 (𝑊 = (𝑁 ClWWalkSN 𝐺) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
51, 4mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
6 prmnn 15226 . . . . . . . . . . 11 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ)
76nnnn0d 11228 . . . . . . . . . 10 (𝑁 ∈ ℙ → 𝑁 ∈ ℕ0)
81eleq2i 2680 . . . . . . . . . . 11 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalkSN 𝐺))
98biimpi 205 . . . . . . . . . 10 (𝑥𝑊𝑥 ∈ (𝑁 ClWWalkSN 𝐺))
10 clwwlksnscsh 41247 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ (𝑁 ClWWalkSN 𝐺)) → {𝑦 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
117, 9, 10syl2an 493 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦 ∈ (𝑁 ClWWalkSN 𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
125, 11eqtrd 2644 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
1312eqeq2d 2620 . . . . . . 7 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
14 eqid 2610 . . . . . . . . . . . . . . . 16 (Vtx‘𝐺) = (Vtx‘𝐺)
1514clwwlknbp 41193 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑁 ClWWalkSN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁))
16 simpll 786 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ∈ Word (Vtx‘𝐺))
17 elnnne0 11183 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
18 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 = (#‘𝑥) → (𝑁 = 0 ↔ (#‘𝑥) = 0))
1918eqcoms 2618 . . . . . . . . . . . . . . . . . . . . . 22 ((#‘𝑥) = 𝑁 → (𝑁 = 0 ↔ (#‘𝑥) = 0))
20 hasheq0 13015 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ Word (Vtx‘𝐺) → ((#‘𝑥) = 0 ↔ 𝑥 = ∅))
2119, 20sylan9bbr 733 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 = 0 ↔ 𝑥 = ∅))
2221necon3bid 2826 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 ≠ 0 ↔ 𝑥 ≠ ∅))
2322biimpcd 238 . . . . . . . . . . . . . . . . . . 19 (𝑁 ≠ 0 → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2417, 23simplbiim 657 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → 𝑥 ≠ ∅))
2524impcom 445 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑥 ≠ ∅)
26 simplr 788 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (#‘𝑥) = 𝑁)
2726eqcomd 2616 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → 𝑁 = (#‘𝑥))
2816, 25, 273jca 1235 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥)))
2928ex 449 . . . . . . . . . . . . . . 15 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
3015, 29syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑁 ClWWalkSN 𝐺) → (𝑁 ∈ ℕ → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
3130com12 32 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑥 ∈ (𝑁 ClWWalkSN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
328, 31syl5bi 231 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
336, 32syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℙ → (𝑥𝑊 → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥))))
3433imp 444 . . . . . . . . . 10 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥)))
35 scshwfzeqfzo 13423 . . . . . . . . . 10 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ 𝑥 ≠ ∅ ∧ 𝑁 = (#‘𝑥)) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3634, 35syl 17 . . . . . . . . 9 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)})
3736eqeq2d 2620 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)}))
38 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
3938eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4039cbvrexv 3148 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
41 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ 𝑢 = (𝑥 cyclShift 𝑚)))
42 eqcom 2617 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢)
4341, 42syl6bb 275 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑢 → (𝑦 = (𝑥 cyclShift 𝑚) ↔ (𝑥 cyclShift 𝑚) = 𝑢))
4443rexbidv 3034 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑢 → (∃𝑚 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0..^(#‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
4540, 44syl5bb 271 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑢 → (∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0..^(#‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢))
4645cbvrabv 3172 . . . . . . . . . . . . . . . . . . 19 {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} = {𝑢 ∈ Word (Vtx‘𝐺) ∣ ∃𝑚 ∈ (0..^(#‘𝑥))(𝑥 cyclShift 𝑚) = 𝑢}
4746cshwshash 15649 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) → ((#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥) ∨ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
4847adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥) ∨ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
4948orcomd 402 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥)))
50 fveq2 6103 . . . . . . . . . . . . . . . . . . 19 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (#‘𝑈) = (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
5150eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ↔ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1))
5250eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = (#‘𝑥) ↔ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥)))
5351, 52orbi12d 742 . . . . . . . . . . . . . . . . 17 (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → (((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥)) ↔ ((#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥))))
5453adantl 481 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → (((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥)) ↔ ((#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = 1 ∨ (#‘{𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) = (#‘𝑥))))
5549, 54mpbird 246 . . . . . . . . . . . . . . 15 (((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) ∧ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}) → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥)))
5655ex 449 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) ∈ ℙ) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥))))
5756ex 449 . . . . . . . . . . . . 13 (𝑥 ∈ Word (Vtx‘𝐺) → ((#‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥)))))
5857adantr 480 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → ((#‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥)))))
59 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑁 = (#‘𝑥) → (𝑁 ∈ ℙ ↔ (#‘𝑥) ∈ ℙ))
60 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (#‘𝑥) → (0..^𝑁) = (0..^(#‘𝑥)))
6160rexeqdv 3122 . . . . . . . . . . . . . . . . . 18 (𝑁 = (#‘𝑥) → (∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
6261rabbidv 3164 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑥) → {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)})
6362eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑥) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} ↔ 𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)}))
64 eqeq2 2621 . . . . . . . . . . . . . . . . 17 (𝑁 = (#‘𝑥) → ((#‘𝑈) = 𝑁 ↔ (#‘𝑈) = (#‘𝑥)))
6564orbi2d 734 . . . . . . . . . . . . . . . 16 (𝑁 = (#‘𝑥) → (((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁) ↔ ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥))))
6663, 65imbi12d 333 . . . . . . . . . . . . . . 15 (𝑁 = (#‘𝑥) → ((𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)) ↔ (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥)))))
6759, 66imbi12d 333 . . . . . . . . . . . . . 14 (𝑁 = (#‘𝑥) → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))) ↔ ((#‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥))))))
6867eqcoms 2618 . . . . . . . . . . . . 13 ((#‘𝑥) = 𝑁 → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))) ↔ ((#‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥))))))
6968adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → ((𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))) ↔ ((#‘𝑥) ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = (#‘𝑥))))))
7058, 69mpbird 246 . . . . . . . . . . 11 ((𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁) → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))))
7115, 70syl 17 . . . . . . . . . 10 (𝑥 ∈ (𝑁 ClWWalkSN 𝐺) → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))))
7271, 1eleq2s 2706 . . . . . . . . 9 (𝑥𝑊 → (𝑁 ∈ ℙ → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))))
7372impcom 445 . . . . . . . 8 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)))
7437, 73sylbid 229 . . . . . . 7 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦 ∈ Word (Vtx‘𝐺) ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)))
7513, 74sylbid 229 . . . . . 6 ((𝑁 ∈ ℙ ∧ 𝑥𝑊) → (𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)))
7675rexlimdva 3013 . . . . 5 (𝑁 ∈ ℙ → (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)))
7776com12 32 . . . 4 (∃𝑥𝑊 𝑈 = {𝑦𝑊 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)} → (𝑁 ∈ ℙ → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)))
783, 77syl6bi 242 . . 3 (𝑈 ∈ (𝑊 / ) → (𝑈 ∈ (𝑊 / ) → (𝑁 ∈ ℙ → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))))
7978pm2.43i 50 . 2 (𝑈 ∈ (𝑊 / ) → (𝑁 ∈ ℙ → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁)))
8079impcom 445 1 ((𝑁 ∈ ℙ ∧ 𝑈 ∈ (𝑊 / )) → ((#‘𝑈) = 1 ∨ (#‘𝑈) = 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∃wrex 2897  {crab 2900  ∅c0 3874  {copab 4642  ‘cfv 5804  (class class class)co 6549   / cqs 7628  0cc0 9815  1c1 9816  ℕcn 10897  ℕ0cn0 11169  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   cyclShift ccsh 13385  ℙcprime 15223  Vtxcvtx 25673   ClWWalkSN cclwwlksn 41184 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-substr 13158  df-reps 13161  df-csh 13386  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-clwwlks 41185  df-clwwlksn 41186 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator