MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harval2 Structured version   Visualization version   GIF version

Theorem harval2 8706
Description: An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
harval2 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem harval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 harval 8350 . . . . . . 7 (𝐴 ∈ dom card → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
21adantr 480 . . . . . 6 ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (har‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
3 domsdomtr 7980 . . . . . . . . . . . . 13 ((𝑦𝐴𝐴𝑥) → 𝑦𝑥)
4 sdomel 7992 . . . . . . . . . . . . 13 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥𝑦𝑥))
53, 4syl5 33 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → ((𝑦𝐴𝐴𝑥) → 𝑦𝑥))
65imp 444 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑦𝐴𝐴𝑥)) → 𝑦𝑥)
76an4s 865 . . . . . . . . . 10 (((𝑦 ∈ On ∧ 𝑦𝐴) ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → 𝑦𝑥)
87ancoms 468 . . . . . . . . 9 (((𝑥 ∈ On ∧ 𝐴𝑥) ∧ (𝑦 ∈ On ∧ 𝑦𝐴)) → 𝑦𝑥)
983impb 1252 . . . . . . . 8 (((𝑥 ∈ On ∧ 𝐴𝑥) ∧ 𝑦 ∈ On ∧ 𝑦𝐴) → 𝑦𝑥)
109rabssdv 3645 . . . . . . 7 ((𝑥 ∈ On ∧ 𝐴𝑥) → {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ 𝑥)
1110adantl 481 . . . . . 6 ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → {𝑦 ∈ On ∣ 𝑦𝐴} ⊆ 𝑥)
122, 11eqsstrd 3602 . . . . 5 ((𝐴 ∈ dom card ∧ (𝑥 ∈ On ∧ 𝐴𝑥)) → (har‘𝐴) ⊆ 𝑥)
1312expr 641 . . . 4 ((𝐴 ∈ dom card ∧ 𝑥 ∈ On) → (𝐴𝑥 → (har‘𝐴) ⊆ 𝑥))
1413ralrimiva 2949 . . 3 (𝐴 ∈ dom card → ∀𝑥 ∈ On (𝐴𝑥 → (har‘𝐴) ⊆ 𝑥))
15 ssintrab 4435 . . 3 ((har‘𝐴) ⊆ {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ∀𝑥 ∈ On (𝐴𝑥 → (har‘𝐴) ⊆ 𝑥))
1614, 15sylibr 223 . 2 (𝐴 ∈ dom card → (har‘𝐴) ⊆ {𝑥 ∈ On ∣ 𝐴𝑥})
17 harcl 8349 . . . . 5 (har‘𝐴) ∈ On
1817a1i 11 . . . 4 (𝐴 ∈ dom card → (har‘𝐴) ∈ On)
19 harsdom 8704 . . . 4 (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴))
20 breq2 4587 . . . . 5 (𝑥 = (har‘𝐴) → (𝐴𝑥𝐴 ≺ (har‘𝐴)))
2120elrab 3331 . . . 4 ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴𝑥} ↔ ((har‘𝐴) ∈ On ∧ 𝐴 ≺ (har‘𝐴)))
2218, 19, 21sylanbrc 695 . . 3 (𝐴 ∈ dom card → (har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴𝑥})
23 intss1 4427 . . 3 ((har‘𝐴) ∈ {𝑥 ∈ On ∣ 𝐴𝑥} → {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ (har‘𝐴))
2422, 23syl 17 . 2 (𝐴 ∈ dom card → {𝑥 ∈ On ∣ 𝐴𝑥} ⊆ (har‘𝐴))
2516, 24eqssd 3585 1 (𝐴 ∈ dom card → (har‘𝐴) = {𝑥 ∈ On ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540   cint 4410   class class class wbr 4583  dom cdm 5038  Oncon0 5640  cfv 5804  cdom 7839  csdm 7840  harchar 8344  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-wrecs 7294  df-recs 7355  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-oi 8298  df-har 8346  df-card 8648
This theorem is referenced by:  alephnbtwn  8777
  Copyright terms: Public domain W3C validator