MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem2 Structured version   Visualization version   GIF version

Theorem hartogslem2 8331
Description: Lemma for hartogs 8332. (Contributed by Mario Carneiro, 14-Jan-2013.)
Hypotheses
Ref Expression
hartogslem.2 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
hartogslem.3 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
Assertion
Ref Expression
hartogslem2 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Distinct variable groups:   𝑓,𝑠,𝑡,𝑤,𝑦,𝑧   𝑓,𝑟,𝑥,𝐴,𝑦   𝑅,𝑟,𝑥   𝑉,𝑟,𝑦
Allowed substitution hints:   𝐴(𝑧,𝑤,𝑡,𝑠)   𝑅(𝑦,𝑧,𝑤,𝑡,𝑓,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑡,𝑓,𝑠,𝑟)   𝑉(𝑥,𝑧,𝑤,𝑡,𝑓,𝑠)

Proof of Theorem hartogslem2
StepHypRef Expression
1 hartogslem.2 . . . 4 𝐹 = {⟨𝑟, 𝑦⟩ ∣ (((dom 𝑟𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))}
2 hartogslem.3 . . . 4 𝑅 = {⟨𝑠, 𝑡⟩ ∣ ∃𝑤𝑦𝑧𝑦 ((𝑠 = (𝑓𝑤) ∧ 𝑡 = (𝑓𝑧)) ∧ 𝑤 E 𝑧)}
31, 2hartogslem1 8330 . . 3 (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴}))
43simp3i 1065 . 2 (𝐴𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥𝐴})
53simp2i 1064 . . . 4 Fun 𝐹
63simp1i 1063 . . . . 5 dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴)
7 sqxpexg 6861 . . . . . 6 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
8 pwexg 4776 . . . . . 6 ((𝐴 × 𝐴) ∈ V → 𝒫 (𝐴 × 𝐴) ∈ V)
97, 8syl 17 . . . . 5 (𝐴𝑉 → 𝒫 (𝐴 × 𝐴) ∈ V)
10 ssexg 4732 . . . . 5 ((dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ 𝒫 (𝐴 × 𝐴) ∈ V) → dom 𝐹 ∈ V)
116, 9, 10sylancr 694 . . . 4 (𝐴𝑉 → dom 𝐹 ∈ V)
12 funex 6387 . . . 4 ((Fun 𝐹 ∧ dom 𝐹 ∈ V) → 𝐹 ∈ V)
135, 11, 12sylancr 694 . . 3 (𝐴𝑉𝐹 ∈ V)
14 rnexg 6990 . . 3 (𝐹 ∈ V → ran 𝐹 ∈ V)
1513, 14syl 17 . 2 (𝐴𝑉 → ran 𝐹 ∈ V)
164, 15eqeltrrd 2689 1 (𝐴𝑉 → {𝑥 ∈ On ∣ 𝑥𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108   class class class wbr 4583  {copab 4642   E cep 4947   I cid 4948   We wwe 4996   × cxp 5036  dom cdm 5038  ran crn 5039  cres 5040  Oncon0 5640  Fun wfun 5798  cfv 5804  cdom 7839  OrdIsocoi 8297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-wrecs 7294  df-recs 7355  df-en 7842  df-dom 7843  df-oi 8298
This theorem is referenced by:  hartogs  8332
  Copyright terms: Public domain W3C validator