MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hadbi Structured version   Visualization version   GIF version

Theorem hadbi 1528
Description: The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
hadbi (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))

Proof of Theorem hadbi
StepHypRef Expression
1 df-xor 1457 . 2 (((𝜑𝜓) ⊻ 𝜒) ↔ ¬ ((𝜑𝜓) ↔ 𝜒))
2 df-had 1524 . 2 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))
3 xnor 1458 . . . 4 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
43bibi1i 327 . . 3 (((𝜑𝜓) ↔ 𝜒) ↔ (¬ (𝜑𝜓) ↔ 𝜒))
5 nbbn 372 . . 3 ((¬ (𝜑𝜓) ↔ 𝜒) ↔ ¬ ((𝜑𝜓) ↔ 𝜒))
64, 5bitri 263 . 2 (((𝜑𝜓) ↔ 𝜒) ↔ ¬ ((𝜑𝜓) ↔ 𝜒))
71, 2, 63bitr4i 291 1 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wxo 1456  haddwhad 1523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 196  df-xor 1457  df-had 1524
This theorem is referenced by:  hadnot  1532  had1  1533
  Copyright terms: Public domain W3C validator