Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gzrngunitlem Structured version   Visualization version   GIF version

Theorem gzrngunitlem 19630
 Description: Lemma for gzrngunit 19631. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
gzrng.1 𝑍 = (ℂflds ℤ[i])
Assertion
Ref Expression
gzrngunitlem (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))

Proof of Theorem gzrngunitlem
StepHypRef Expression
1 sq1 12820 . . 3 (1↑2) = 1
2 ax-1ne0 9884 . . . . . 6 1 ≠ 0
3 gzsubrg 19619 . . . . . . 7 ℤ[i] ∈ (SubRing‘ℂfld)
4 gzrng.1 . . . . . . . 8 𝑍 = (ℂflds ℤ[i])
54subrgring 18606 . . . . . . 7 (ℤ[i] ∈ (SubRing‘ℂfld) → 𝑍 ∈ Ring)
6 eqid 2610 . . . . . . . 8 (Unit‘𝑍) = (Unit‘𝑍)
7 subrgsubg 18609 . . . . . . . . 9 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] ∈ (SubGrp‘ℂfld))
8 cnfld0 19589 . . . . . . . . . 10 0 = (0g‘ℂfld)
94, 8subg0 17423 . . . . . . . . 9 (ℤ[i] ∈ (SubGrp‘ℂfld) → 0 = (0g𝑍))
103, 7, 9mp2b 10 . . . . . . . 8 0 = (0g𝑍)
11 cnfld1 19590 . . . . . . . . . 10 1 = (1r‘ℂfld)
124, 11subrg1 18613 . . . . . . . . 9 (ℤ[i] ∈ (SubRing‘ℂfld) → 1 = (1r𝑍))
133, 12ax-mp 5 . . . . . . . 8 1 = (1r𝑍)
146, 10, 130unit 18503 . . . . . . 7 (𝑍 ∈ Ring → (0 ∈ (Unit‘𝑍) ↔ 1 = 0))
153, 5, 14mp2b 10 . . . . . 6 (0 ∈ (Unit‘𝑍) ↔ 1 = 0)
162, 15nemtbir 2877 . . . . 5 ¬ 0 ∈ (Unit‘𝑍)
174subrgbas 18612 . . . . . . . . . . 11 (ℤ[i] ∈ (SubRing‘ℂfld) → ℤ[i] = (Base‘𝑍))
183, 17ax-mp 5 . . . . . . . . . 10 ℤ[i] = (Base‘𝑍)
1918, 6unitcl 18482 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℤ[i])
20 gzabssqcl 15483 . . . . . . . . 9 (𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ0)
22 elnn0 11171 . . . . . . . 8 (((abs‘𝐴)↑2) ∈ ℕ0 ↔ (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0))
2321, 22sylib 207 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) ∈ ℕ ∨ ((abs‘𝐴)↑2) = 0))
2423ord 391 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → ((abs‘𝐴)↑2) = 0))
25 gzcn 15474 . . . . . . . . . . 11 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
2619, 25syl 17 . . . . . . . . . 10 (𝐴 ∈ (Unit‘𝑍) → 𝐴 ∈ ℂ)
2726abscld 14023 . . . . . . . . 9 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℝ)
2827recnd 9947 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (abs‘𝐴) ∈ ℂ)
29 sqeq0 12789 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0))
3028, 29syl 17 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 ↔ (abs‘𝐴) = 0))
3126abs00ad 13878 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
32 eleq1 2676 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ (Unit‘𝑍) ↔ 0 ∈ (Unit‘𝑍)))
3332biimpcd 238 . . . . . . . 8 (𝐴 ∈ (Unit‘𝑍) → (𝐴 = 0 → 0 ∈ (Unit‘𝑍)))
3431, 33sylbid 229 . . . . . . 7 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴) = 0 → 0 ∈ (Unit‘𝑍)))
3530, 34sylbid 229 . . . . . 6 (𝐴 ∈ (Unit‘𝑍) → (((abs‘𝐴)↑2) = 0 → 0 ∈ (Unit‘𝑍)))
3624, 35syld 46 . . . . 5 (𝐴 ∈ (Unit‘𝑍) → (¬ ((abs‘𝐴)↑2) ∈ ℕ → 0 ∈ (Unit‘𝑍)))
3716, 36mt3i 140 . . . 4 (𝐴 ∈ (Unit‘𝑍) → ((abs‘𝐴)↑2) ∈ ℕ)
3837nnge1d 10940 . . 3 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ ((abs‘𝐴)↑2))
391, 38syl5eqbr 4618 . 2 (𝐴 ∈ (Unit‘𝑍) → (1↑2) ≤ ((abs‘𝐴)↑2))
4026absge0d 14031 . . 3 (𝐴 ∈ (Unit‘𝑍) → 0 ≤ (abs‘𝐴))
41 1re 9918 . . . 4 1 ∈ ℝ
42 0le1 10430 . . . 4 0 ≤ 1
43 le2sq 12800 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴))) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2)))
4441, 42, 43mpanl12 714 . . 3 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2)))
4527, 40, 44syl2anc 691 . 2 (𝐴 ∈ (Unit‘𝑍) → (1 ≤ (abs‘𝐴) ↔ (1↑2) ≤ ((abs‘𝐴)↑2)))
4639, 45mpbird 246 1 (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   ≤ cle 9954  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ↑cexp 12722  abscabs 13822  ℤ[i]cgz 15471  Basecbs 15695   ↾s cress 15696  0gc0g 15923  SubGrpcsubg 17411  1rcur 18324  Ringcrg 18370  Unitcui 18462  SubRingcsubrg 18599  ℂfldccnfld 19567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-gz 15472  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-cmn 18018  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601  df-cnfld 19568 This theorem is referenced by:  gzrngunit  19631
 Copyright terms: Public domain W3C validator