MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzmhm Structured version   Visualization version   GIF version

Theorem gsumzmhm 18160
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzmhm.b 𝐵 = (Base‘𝐺)
gsumzmhm.z 𝑍 = (Cntz‘𝐺)
gsumzmhm.g (𝜑𝐺 ∈ Mnd)
gsumzmhm.h (𝜑𝐻 ∈ Mnd)
gsumzmhm.a (𝜑𝐴𝑉)
gsumzmhm.k (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
gsumzmhm.f (𝜑𝐹:𝐴𝐵)
gsumzmhm.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzmhm.0 0 = (0g𝐺)
gsumzmhm.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzmhm (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumzmhm
Dummy variables 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzmhm.h . . . . . . 7 (𝜑𝐻 ∈ Mnd)
2 gsumzmhm.a . . . . . . 7 (𝜑𝐴𝑉)
3 eqid 2610 . . . . . . . 8 (0g𝐻) = (0g𝐻)
43gsumz 17197 . . . . . . 7 ((𝐻 ∈ Mnd ∧ 𝐴𝑉) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
51, 2, 4syl2anc 691 . . . . . 6 (𝜑 → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
65adantr 480 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
7 gsumzmhm.k . . . . . . 7 (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
8 gsumzmhm.0 . . . . . . . 8 0 = (0g𝐺)
98, 3mhm0 17166 . . . . . . 7 (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾0 ) = (0g𝐻))
107, 9syl 17 . . . . . 6 (𝜑 → (𝐾0 ) = (0g𝐻))
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾0 ) = (0g𝐻))
126, 11eqtr4d 2647 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (𝐾0 ))
13 gsumzmhm.g . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
14 gsumzmhm.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
1514, 8mndidcl 17131 . . . . . . . . 9 (𝐺 ∈ Mnd → 0𝐵)
1613, 15syl 17 . . . . . . . 8 (𝜑0𝐵)
1716ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) ∧ 𝑘𝐴) → 0𝐵)
18 gsumzmhm.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
19 fvex 6113 . . . . . . . . . 10 (0g𝐺) ∈ V
208, 19eqeltri 2684 . . . . . . . . 9 0 ∈ V
2120a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
22 fex 6394 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
2318, 2, 22syl2anc 691 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
24 suppimacnv 7193 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2523, 21, 24syl2anc 691 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
26 ssid 3587 . . . . . . . . 9 (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))
2725, 26syl6eqss 3618 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
2818, 2, 21, 27gsumcllem 18132 . . . . . . 7 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐹 = (𝑘𝐴0 ))
29 eqid 2610 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
3014, 29mhmf 17163 . . . . . . . . . 10 (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻))
317, 30syl 17 . . . . . . . . 9 (𝜑𝐾:𝐵⟶(Base‘𝐻))
3231feqmptd 6159 . . . . . . . 8 (𝜑𝐾 = (𝑥𝐵 ↦ (𝐾𝑥)))
3332adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐾 = (𝑥𝐵 ↦ (𝐾𝑥)))
34 fveq2 6103 . . . . . . 7 (𝑥 = 0 → (𝐾𝑥) = (𝐾0 ))
3517, 28, 33, 34fmptco 6303 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾𝐹) = (𝑘𝐴 ↦ (𝐾0 )))
3610mpteq2dv 4673 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ (𝐾0 )) = (𝑘𝐴 ↦ (0g𝐻)))
3736adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑘𝐴 ↦ (𝐾0 )) = (𝑘𝐴 ↦ (0g𝐻)))
3835, 37eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾𝐹) = (𝑘𝐴 ↦ (0g𝐻)))
3938oveq2d 6565 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝐾𝐹)) = (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))))
4028oveq2d 6565 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
418gsumz 17197 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4213, 2, 41syl2anc 691 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4342adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4440, 43eqtrd 2644 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = 0 )
4544fveq2d 6107 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾0 ))
4612, 39, 453eqtr4d 2654 . . 3 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
4746ex 449 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
4813adantr 480 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd)
49 eqid 2610 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
5014, 49mndcl 17124 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
51503expb 1258 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
5248, 51sylan 487 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
5318adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴𝐵)
54 f1of1 6049 . . . . . . . . . . . 12 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
5554ad2antll 761 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
56 cnvimass 5404 . . . . . . . . . . . 12 (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹
57 fdm 5964 . . . . . . . . . . . . 13 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
5853, 57syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → dom 𝐹 = 𝐴)
5956, 58syl5sseq 3616 . . . . . . . . . . 11 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
60 f1ss 6019 . . . . . . . . . . 11 ((𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })) ∧ (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
6155, 59, 60syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
62 f1f 6014 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
6361, 62syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
64 fco 5971 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵)
6553, 63, 64syl2anc 691 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵)
6665ffvelrnda 6267 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐹𝑓)‘𝑥) ∈ 𝐵)
67 simprl 790 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
68 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
6967, 68syl6eleq 2698 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (#‘(𝐹 “ (V ∖ { 0 }))) ∈ (ℤ‘1))
707adantr 480 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐾 ∈ (𝐺 MndHom 𝐻))
71 eqid 2610 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
7214, 49, 71mhmlin 17165 . . . . . . . . 9 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥𝐵𝑦𝐵) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
73723expb 1258 . . . . . . . 8 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
7470, 73sylan 487 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
75 coass 5571 . . . . . . . . 9 ((𝐾𝐹) ∘ 𝑓) = (𝐾 ∘ (𝐹𝑓))
7675fveq1i 6104 . . . . . . . 8 (((𝐾𝐹) ∘ 𝑓)‘𝑥) = ((𝐾 ∘ (𝐹𝑓))‘𝑥)
77 fvco3 6185 . . . . . . . . 9 (((𝐹𝑓):(1...(#‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹𝑓))‘𝑥) = (𝐾‘((𝐹𝑓)‘𝑥)))
7865, 77sylan 487 . . . . . . . 8 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹𝑓))‘𝑥) = (𝐾‘((𝐹𝑓)‘𝑥)))
7976, 78syl5req 2657 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(#‘(𝐹 “ (V ∖ { 0 }))))) → (𝐾‘((𝐹𝑓)‘𝑥)) = (((𝐾𝐹) ∘ 𝑓)‘𝑥))
8052, 66, 69, 74, 79seqhomo 12710 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾‘(seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))) = (seq1((+g𝐻), ((𝐾𝐹) ∘ 𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
81 gsumzmhm.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
822adantr 480 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐴𝑉)
83 gsumzmhm.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8483adantr 480 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8527adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
86 f1ofo 6057 . . . . . . . . . . 11 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })))
87 forn 6031 . . . . . . . . . . 11 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8886, 87syl 17 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8988ad2antll 761 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
9085, 89sseqtr4d 3605 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
91 eqid 2610 . . . . . . . 8 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
9214, 8, 49, 81, 48, 82, 53, 84, 67, 61, 90, 91gsumval3 18131 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
9392fveq2d 6107 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 “ (V ∖ { 0 }))))))
94 eqid 2610 . . . . . . 7 (Cntz‘𝐻) = (Cntz‘𝐻)
951adantr 480 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐻 ∈ Mnd)
9631adantr 480 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐾:𝐵⟶(Base‘𝐻))
97 fco 5971 . . . . . . . 8 ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐾𝐹):𝐴⟶(Base‘𝐻))
9896, 53, 97syl2anc 691 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾𝐹):𝐴⟶(Base‘𝐻))
9981, 94cntzmhm2 17595 . . . . . . . . 9 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)))
10070, 84, 99syl2anc 691 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)))
101 rnco2 5559 . . . . . . . 8 ran (𝐾𝐹) = (𝐾 “ ran 𝐹)
102101fveq2i 6106 . . . . . . . 8 ((Cntz‘𝐻)‘ran (𝐾𝐹)) = ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹))
103100, 101, 1023sstr4g 3609 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran (𝐾𝐹) ⊆ ((Cntz‘𝐻)‘ran (𝐾𝐹)))
104 eldifi 3694 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 }))) → 𝑥𝐴)
105 fvco3 6185 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
10653, 104, 105syl2an 493 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
10720a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 0 ∈ V)
10853, 85, 82, 107suppssr 7213 . . . . . . . . . . 11 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐹𝑥) = 0 )
109108fveq2d 6107 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐹𝑥)) = (𝐾0 ))
11010ad2antrr 758 . . . . . . . . . 10 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐾0 ) = (0g𝐻))
111106, 109, 1103eqtrd 2648 . . . . . . . . 9 (((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹)‘𝑥) = (0g𝐻))
11298, 111suppss 7212 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹) supp (0g𝐻)) ⊆ (𝐹 “ (V ∖ { 0 })))
113112, 89sseqtr4d 3605 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹) supp (0g𝐻)) ⊆ ran 𝑓)
114 eqid 2610 . . . . . . 7 (((𝐾𝐹) ∘ 𝑓) supp (0g𝐻)) = (((𝐾𝐹) ∘ 𝑓) supp (0g𝐻))
11529, 3, 71, 94, 95, 82, 98, 103, 67, 61, 113, 114gsumval3 18131 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg (𝐾𝐹)) = (seq1((+g𝐻), ((𝐾𝐹) ∘ 𝑓))‘(#‘(𝐹 “ (V ∖ { 0 })))))
11680, 93, 1153eqtr4rd 2655 . . . . 5 ((𝜑 ∧ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
117116expr 641 . . . 4 ((𝜑 ∧ (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
118117exlimdv 1848 . . 3 ((𝜑 ∧ (#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
119118expimpd 627 . 2 (𝜑 → (((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 }))) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
120 gsumzmhm.w . . . . 5 (𝜑𝐹 finSupp 0 )
121120fsuppimpd 8165 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
12225, 121eqeltrrd 2689 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ∈ Fin)
123 fz1f1o 14288 . . 3 ((𝐹 “ (V ∖ { 0 })) ∈ Fin → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
124122, 123syl 17 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((#‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
12547, 119, 124mpjaod 395 1 (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  wf 5800  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549   supp csupp 7182  Fincfn 7841   finSupp cfsupp 8158  1c1 9816  cn 10897  cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117   MndHom cmhm 17156  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-cntz 17573
This theorem is referenced by:  gsummhm  18161  gsumzinv  18168
  Copyright terms: Public domain W3C validator