MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsnfd Structured version   Visualization version   GIF version

Theorem gsumsnfd 18174
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumsnd.b 𝐵 = (Base‘𝐺)
gsumsnd.g (𝜑𝐺 ∈ Mnd)
gsumsnd.m (𝜑𝑀𝑉)
gsumsnd.c (𝜑𝐶𝐵)
gsumsnd.s ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)
gsumsnfd.p 𝑘𝜑
gsumsnfd.c 𝑘𝐶
Assertion
Ref Expression
gsumsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑘)   𝑉(𝑘)

Proof of Theorem gsumsnfd
StepHypRef Expression
1 gsumsnfd.p . . . . 5 𝑘𝜑
2 elsni 4142 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
3 gsumsnd.s . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)
42, 3sylan2 490 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐶)
51, 4mpteq2da 4671 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶))
65oveq2d 6565 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)))
7 gsumsnd.g . . . 4 (𝜑𝐺 ∈ Mnd)
8 snfi 7923 . . . . 5 {𝑀} ∈ Fin
98a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
10 gsumsnd.c . . . 4 (𝜑𝐶𝐵)
11 gsumsnfd.c . . . . 5 𝑘𝐶
12 gsumsnd.b . . . . 5 𝐵 = (Base‘𝐺)
13 eqid 2610 . . . . 5 (.g𝐺) = (.g𝐺)
1411, 12, 13gsumconstf 18158 . . . 4 ((𝐺 ∈ Mnd ∧ {𝑀} ∈ Fin ∧ 𝐶𝐵) → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((#‘{𝑀})(.g𝐺)𝐶))
157, 9, 10, 14syl3anc 1318 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)) = ((#‘{𝑀})(.g𝐺)𝐶))
166, 15eqtrd 2644 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = ((#‘{𝑀})(.g𝐺)𝐶))
17 gsumsnd.m . . . 4 (𝜑𝑀𝑉)
18 hashsng 13020 . . . 4 (𝑀𝑉 → (#‘{𝑀}) = 1)
1917, 18syl 17 . . 3 (𝜑 → (#‘{𝑀}) = 1)
2019oveq1d 6564 . 2 (𝜑 → ((#‘{𝑀})(.g𝐺)𝐶) = (1(.g𝐺)𝐶))
2112, 13mulg1 17371 . . 3 (𝐶𝐵 → (1(.g𝐺)𝐶) = 𝐶)
2210, 21syl 17 . 2 (𝜑 → (1(.g𝐺)𝐶) = 𝐶)
2316, 20, 223eqtrd 2648 1 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  {csn 4125  cmpt 4643  cfv 5804  (class class class)co 6549  Fincfn 7841  1c1 9816  #chash 12979  Basecbs 15695   Σg cgsu 15924  Mndcmnd 17117  .gcmg 17363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mulg 17364  df-cntz 17573
This theorem is referenced by:  gsumsnd  18175  gsumsnf  18176  gsumunsnfd  18179  esumsnf  29453  gsumdifsndf  41937
  Copyright terms: Public domain W3C validator