MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumprval Structured version   Visualization version   GIF version

Theorem gsumprval 17104
Description: Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsumprval.b 𝐵 = (Base‘𝐺)
gsumprval.p + = (+g𝐺)
gsumprval.g (𝜑𝐺𝑉)
gsumprval.m (𝜑𝑀 ∈ ℤ)
gsumprval.n (𝜑𝑁 = (𝑀 + 1))
gsumprval.f (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
Assertion
Ref Expression
gsumprval (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))

Proof of Theorem gsumprval
StepHypRef Expression
1 gsumprval.b . . 3 𝐵 = (Base‘𝐺)
2 gsumprval.p . . 3 + = (+g𝐺)
3 gsumprval.g . . 3 (𝜑𝐺𝑉)
4 gsumprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 uzid 11578 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
64, 5syl 17 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
7 peano2uz 11617 . . . 4 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
86, 7syl 17 . . 3 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
9 gsumprval.f . . . 4 (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)
10 fzpr 12266 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
114, 10syl 17 . . . . . 6 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
12 gsumprval.n . . . . . . . 8 (𝜑𝑁 = (𝑀 + 1))
1312eqcomd 2616 . . . . . . 7 (𝜑 → (𝑀 + 1) = 𝑁)
1413preq2d 4219 . . . . . 6 (𝜑 → {𝑀, (𝑀 + 1)} = {𝑀, 𝑁})
1511, 14eqtrd 2644 . . . . 5 (𝜑 → (𝑀...(𝑀 + 1)) = {𝑀, 𝑁})
1615feq2d 5944 . . . 4 (𝜑 → (𝐹:(𝑀...(𝑀 + 1))⟶𝐵𝐹:{𝑀, 𝑁}⟶𝐵))
179, 16mpbird 246 . . 3 (𝜑𝐹:(𝑀...(𝑀 + 1))⟶𝐵)
181, 2, 3, 8, 17gsumval2 17103 . 2 (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘(𝑀 + 1)))
19 seqp1 12678 . . 3 (𝑀 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
206, 19syl 17 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝑀 + 1)) = ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
21 seq1 12676 . . . 4 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
224, 21syl 17 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
2313fveq2d 6107 . . 3 (𝜑 → (𝐹‘(𝑀 + 1)) = (𝐹𝑁))
2422, 23oveq12d 6567 . 2 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))) = ((𝐹𝑀) + (𝐹𝑁)))
2518, 20, 243eqtrd 2648 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {cpr 4127  wf 5800  cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  cz 11254  cuz 11563  ...cfz 12197  seqcseq 12663  Basecbs 15695  +gcplusg 15768   Σg cgsu 15924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-seq 12664  df-0g 15925  df-gsum 15926
This theorem is referenced by:  gsumpr12val  17105
  Copyright terms: Public domain W3C validator