MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumply1subr Structured version   Visualization version   GIF version

Theorem gsumply1subr 19425
Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
subrgply1.s 𝑆 = (Poly1𝑅)
subrgply1.h 𝐻 = (𝑅s 𝑇)
subrgply1.u 𝑈 = (Poly1𝐻)
subrgply1.b 𝐵 = (Base‘𝑈)
gsumply1subr.s (𝜑𝑇 ∈ (SubRing‘𝑅))
gsumply1subr.a (𝜑𝐴𝑉)
gsumply1subr.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumply1subr (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))

Proof of Theorem gsumply1subr
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumply1subr.a . . 3 (𝜑𝐴𝑉)
2 gsumply1subr.s . . . 4 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 subrgply1.s . . . . 5 𝑆 = (Poly1𝑅)
4 subrgply1.h . . . . 5 𝐻 = (𝑅s 𝑇)
5 subrgply1.u . . . . 5 𝑈 = (Poly1𝐻)
6 subrgply1.b . . . . 5 𝐵 = (Base‘𝑈)
73, 4, 5, 6subrgply1 19424 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
8 subrgsubg 18609 . . . . 5 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
9 subgsubm 17439 . . . . 5 (𝐵 ∈ (SubGrp‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆))
108, 9syl 17 . . . 4 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubMnd‘𝑆))
112, 7, 103syl 18 . . 3 (𝜑𝐵 ∈ (SubMnd‘𝑆))
12 gsumply1subr.f . . 3 (𝜑𝐹:𝐴𝐵)
13 eqid 2610 . . 3 (𝑆s 𝐵) = (𝑆s 𝐵)
141, 11, 12, 13gsumsubm 17196 . 2 (𝜑 → (𝑆 Σg 𝐹) = ((𝑆s 𝐵) Σg 𝐹))
15 fex 6394 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
1612, 1, 15syl2anc 691 . . 3 (𝜑𝐹 ∈ V)
17 ovex 6577 . . . 4 (𝑆s 𝐵) ∈ V
1817a1i 11 . . 3 (𝜑 → (𝑆s 𝐵) ∈ V)
19 fvex 6113 . . . . 5 (Poly1𝐻) ∈ V
205, 19eqeltri 2684 . . . 4 𝑈 ∈ V
2120a1i 11 . . 3 (𝜑𝑈 ∈ V)
22 eqid 2610 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
236oveq2i 6560 . . . . 5 (𝑆s 𝐵) = (𝑆s (Base‘𝑈))
243, 4, 5, 22, 2, 23ressply1bas 19420 . . . 4 (𝜑 → (Base‘𝑈) = (Base‘(𝑆s 𝐵)))
2524eqcomd 2616 . . 3 (𝜑 → (Base‘(𝑆s 𝐵)) = (Base‘𝑈))
2613subrgring 18606 . . . . 5 (𝐵 ∈ (SubRing‘𝑆) → (𝑆s 𝐵) ∈ Ring)
277, 26syl 17 . . . 4 (𝑇 ∈ (SubRing‘𝑅) → (𝑆s 𝐵) ∈ Ring)
28 ringmgm 18380 . . . 4 ((𝑆s 𝐵) ∈ Ring → (𝑆s 𝐵) ∈ Mgm)
292, 27, 283syl 18 . . 3 (𝜑 → (𝑆s 𝐵) ∈ Mgm)
30 simpl 472 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝜑)
313, 4, 5, 6, 2, 13ressply1bas 19420 . . . . . . . . . 10 (𝜑𝐵 = (Base‘(𝑆s 𝐵)))
3231eqcomd 2616 . . . . . . . . 9 (𝜑 → (Base‘(𝑆s 𝐵)) = 𝐵)
3332eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑠 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑠𝐵))
3433biimpcd 238 . . . . . . 7 (𝑠 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑠𝐵))
3534adantr 480 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑠𝐵))
3635impcom 445 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑠𝐵)
3732eleq2d 2673 . . . . . . . 8 (𝜑 → (𝑡 ∈ (Base‘(𝑆s 𝐵)) ↔ 𝑡𝐵))
3837biimpcd 238 . . . . . . 7 (𝑡 ∈ (Base‘(𝑆s 𝐵)) → (𝜑𝑡𝐵))
3938adantl 481 . . . . . 6 ((𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵))) → (𝜑𝑡𝐵))
4039impcom 445 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → 𝑡𝐵)
413, 4, 5, 6, 2, 13ressply1add 19421 . . . . 5 ((𝜑 ∧ (𝑠𝐵𝑡𝐵)) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
4230, 36, 40, 41syl12anc 1316 . . . 4 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g𝑈)𝑡) = (𝑠(+g‘(𝑆s 𝐵))𝑡))
4342eqcomd 2616 . . 3 ((𝜑 ∧ (𝑠 ∈ (Base‘(𝑆s 𝐵)) ∧ 𝑡 ∈ (Base‘(𝑆s 𝐵)))) → (𝑠(+g‘(𝑆s 𝐵))𝑡) = (𝑠(+g𝑈)𝑡))
44 ffun 5961 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
4512, 44syl 17 . . 3 (𝜑 → Fun 𝐹)
46 frn 5966 . . . . 5 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
4712, 46syl 17 . . . 4 (𝜑 → ran 𝐹𝐵)
4847, 31sseqtrd 3604 . . 3 (𝜑 → ran 𝐹 ⊆ (Base‘(𝑆s 𝐵)))
4916, 18, 21, 25, 29, 43, 45, 48gsummgmpropd 17098 . 2 (𝜑 → ((𝑆s 𝐵) Σg 𝐹) = (𝑈 Σg 𝐹))
5014, 49eqtrd 2644 1 (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  ran crn 5039  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  +gcplusg 15768   Σg cgsu 15924  Mgmcmgm 17063  SubMndcsubmnd 17157  SubGrpcsubg 17411  Ringcrg 18370  SubRingcsubrg 18599  Poly1cpl1 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-tset 15787  df-ple 15788  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-psr 19177  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-ply1 19373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator