Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptnn0fzfv | Structured version Visualization version GIF version |
Description: A final group sum over a function over the nonnegative integers (given as mapping to its function values) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.) |
Ref | Expression |
---|---|
gsummptnn0fzfv.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptnn0fzfv.0 | ⊢ 0 = (0g‘𝐺) |
gsummptnn0fzfv.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptnn0fzfv.f | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) |
gsummptnn0fzfv.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
gsummptnn0fzfv.u | ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) |
Ref | Expression |
---|---|
gsummptnn0fzfv | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹‘𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹‘𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptnn0fzfv.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptnn0fzfv.0 | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptnn0fzfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummptnn0fzfv.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 ℕ0)) | |
5 | elmapi 7765 | . . . 4 ⊢ (𝐹 ∈ (𝐵 ↑𝑚 ℕ0) → 𝐹:ℕ0⟶𝐵) | |
6 | ffvelrn 6265 | . . . . 5 ⊢ ((𝐹:ℕ0⟶𝐵 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ 𝐵) | |
7 | 6 | ex 449 | . . . 4 ⊢ (𝐹:ℕ0⟶𝐵 → (𝑘 ∈ ℕ0 → (𝐹‘𝑘) ∈ 𝐵)) |
8 | 4, 5, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ℕ0 → (𝐹‘𝑘) ∈ 𝐵)) |
9 | 8 | ralrimiv 2948 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹‘𝑘) ∈ 𝐵) |
10 | gsummptnn0fzfv.s | . 2 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
11 | gsummptnn0fzfv.u | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 )) | |
12 | breq2 4587 | . . . . 5 ⊢ (𝑥 = 𝑘 → (𝑆 < 𝑥 ↔ 𝑆 < 𝑘)) | |
13 | fveq2 6103 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
14 | 13 | eqeq1d 2612 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝐹‘𝑥) = 0 ↔ (𝐹‘𝑘) = 0 )) |
15 | 12, 14 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝑘 → ((𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) ↔ (𝑆 < 𝑘 → (𝐹‘𝑘) = 0 ))) |
16 | 15 | cbvralv 3147 | . . 3 ⊢ (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → (𝐹‘𝑥) = 0 ) ↔ ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹‘𝑘) = 0 )) |
17 | 11, 16 | sylib 207 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘 → (𝐹‘𝑘) = 0 )) |
18 | 1, 2, 3, 9, 10, 17 | gsummptnn0fzv 18206 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0 ↦ (𝐹‘𝑘))) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ (𝐹‘𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∀wral 2896 class class class wbr 4583 ↦ cmpt 4643 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 0cc0 9815 < clt 9953 ℕ0cn0 11169 ...cfz 12197 Basecbs 15695 0gc0g 15923 Σg cgsu 15924 CMndccmn 18016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-0g 15925 df-gsum 15926 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-cntz 17573 df-cmn 18018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |