MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptnn0fz Structured version   Visualization version   GIF version

Theorem gsummptnn0fz 18205
Description: A final group sum over a function over the nonnegative integers (given as mapping) is equal to a final group sum over a finite interval of nonnegative integers. (Contributed by AV, 10-Oct-2019.)
Hypotheses
Ref Expression
gsummptnn0fz.k 𝑘𝜑
gsummptnn0fz.b 𝐵 = (Base‘𝐺)
gsummptnn0fz.0 0 = (0g𝐺)
gsummptnn0fz.g (𝜑𝐺 ∈ CMnd)
gsummptnn0fz.f (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
gsummptnn0fz.s (𝜑𝑆 ∈ ℕ0)
gsummptnn0fz.u (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
Assertion
Ref Expression
gsummptnn0fz (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Distinct variable groups:   𝐵,𝑘   𝑆,𝑘   0 ,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐺(𝑘)

Proof of Theorem gsummptnn0fz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsummptnn0fz.u . . . 4 (𝜑 → ∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ))
2 nfv 1830 . . . . 5 𝑥(𝑆 < 𝑘𝐶 = 0 )
3 nfv 1830 . . . . . 6 𝑘 𝑆 < 𝑥
4 nfcsb1v 3515 . . . . . . 7 𝑘𝑥 / 𝑘𝐶
54nfeq1 2764 . . . . . 6 𝑘𝑥 / 𝑘𝐶 = 0
63, 5nfim 1813 . . . . 5 𝑘(𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )
7 breq2 4587 . . . . . 6 (𝑘 = 𝑥 → (𝑆 < 𝑘𝑆 < 𝑥))
8 csbeq1a 3508 . . . . . . 7 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
98eqeq1d 2612 . . . . . 6 (𝑘 = 𝑥 → (𝐶 = 0𝑥 / 𝑘𝐶 = 0 ))
107, 9imbi12d 333 . . . . 5 (𝑘 = 𝑥 → ((𝑆 < 𝑘𝐶 = 0 ) ↔ (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 )))
112, 6, 10cbvral 3143 . . . 4 (∀𝑘 ∈ ℕ0 (𝑆 < 𝑘𝐶 = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
121, 11sylib 207 . . 3 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ))
13 simpr 476 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
14 gsummptnn0fz.f . . . . . . . . . . . . 13 (𝜑 → ∀𝑘 ∈ ℕ0 𝐶𝐵)
1514anim2i 591 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝜑) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵))
1615ancoms 468 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵))
17 rspcsbela 3958 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0 ∧ ∀𝑘 ∈ ℕ0 𝐶𝐵) → 𝑥 / 𝑘𝐶𝐵)
1816, 17syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ0) → 𝑥 / 𝑘𝐶𝐵)
1913, 18jca 553 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ0) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
2019adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → (𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵))
21 eqid 2610 . . . . . . . . 9 (𝑘 ∈ ℕ0𝐶) = (𝑘 ∈ ℕ0𝐶)
2221fvmpts 6194 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑥 / 𝑘𝐶𝐵) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
2320, 22syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 𝑥 / 𝑘𝐶)
24 simpr 476 . . . . . . 7 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → 𝑥 / 𝑘𝐶 = 0 )
2523, 24eqtrd 2644 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ 𝑥 / 𝑘𝐶 = 0 ) → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )
2625ex 449 . . . . 5 ((𝜑𝑥 ∈ ℕ0) → (𝑥 / 𝑘𝐶 = 0 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
2726imim2d 55 . . . 4 ((𝜑𝑥 ∈ ℕ0) → ((𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2827ralimdva 2945 . . 3 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥𝑥 / 𝑘𝐶 = 0 ) → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 )))
2912, 28mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ))
30 gsummptnn0fz.b . . 3 𝐵 = (Base‘𝐺)
31 gsummptnn0fz.0 . . 3 0 = (0g𝐺)
32 gsummptnn0fz.g . . 3 (𝜑𝐺 ∈ CMnd)
3321fmpt 6289 . . . . 5 (∀𝑘 ∈ ℕ0 𝐶𝐵 ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
3414, 33sylib 207 . . . 4 (𝜑 → (𝑘 ∈ ℕ0𝐶):ℕ0𝐵)
35 fvex 6113 . . . . . . 7 (Base‘𝐺) ∈ V
3630, 35eqeltri 2684 . . . . . 6 𝐵 ∈ V
37 nn0ex 11175 . . . . . 6 0 ∈ V
3836, 37pm3.2i 470 . . . . 5 (𝐵 ∈ V ∧ ℕ0 ∈ V)
39 elmapg 7757 . . . . 5 ((𝐵 ∈ V ∧ ℕ0 ∈ V) → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵𝑚0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
4038, 39mp1i 13 . . . 4 (𝜑 → ((𝑘 ∈ ℕ0𝐶) ∈ (𝐵𝑚0) ↔ (𝑘 ∈ ℕ0𝐶):ℕ0𝐵))
4134, 40mpbird 246 . . 3 (𝜑 → (𝑘 ∈ ℕ0𝐶) ∈ (𝐵𝑚0))
42 gsummptnn0fz.s . . 3 (𝜑𝑆 ∈ ℕ0)
43 fz0ssnn0 12304 . . . . 5 (0...𝑆) ⊆ ℕ0
44 resmpt 5369 . . . . 5 ((0...𝑆) ⊆ ℕ0 → ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶))
4543, 44ax-mp 5 . . . 4 ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆)) = (𝑘 ∈ (0...𝑆) ↦ 𝐶)
4645eqcomi 2619 . . 3 (𝑘 ∈ (0...𝑆) ↦ 𝐶) = ((𝑘 ∈ ℕ0𝐶) ↾ (0...𝑆))
4730, 31, 32, 41, 42, 46fsfnn0gsumfsffz 18202 . 2 (𝜑 → (∀𝑥 ∈ ℕ0 (𝑆 < 𝑥 → ((𝑘 ∈ ℕ0𝐶)‘𝑥) = 0 ) → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶))))
4829, 47mpd 15 1 (𝜑 → (𝐺 Σg (𝑘 ∈ ℕ0𝐶)) = (𝐺 Σg (𝑘 ∈ (0...𝑆) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wnf 1699  wcel 1977  wral 2896  Vcvv 3173  csb 3499  wss 3540   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  0cc0 9815   < clt 9953  0cn0 11169  ...cfz 12197  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cntz 17573  df-cmn 18018
This theorem is referenced by:  gsummptnn0fzv  18206  gsummoncoe1  19495  pmatcollpwfi  20406
  Copyright terms: Public domain W3C validator