Step | Hyp | Ref
| Expression |
1 | | gruina.1 |
. . . . . 6
⊢ 𝐴 = (𝑈 ∩ On) |
2 | | inss1 3795 |
. . . . . 6
⊢ (𝑈 ∩ On) ⊆ 𝑈 |
3 | 1, 2 | eqsstri 3598 |
. . . . 5
⊢ 𝐴 ⊆ 𝑈 |
4 | | sseq2 3590 |
. . . . 5
⊢ (𝑈 = ∅ → (𝐴 ⊆ 𝑈 ↔ 𝐴 ⊆ ∅)) |
5 | 3, 4 | mpbii 222 |
. . . 4
⊢ (𝑈 = ∅ → 𝐴 ⊆
∅) |
6 | | ss0 3926 |
. . . 4
⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
7 | | fveq2 6103 |
. . . . . 6
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) =
(𝑅1‘∅)) |
8 | | r10 8514 |
. . . . . 6
⊢
(𝑅1‘∅) = ∅ |
9 | 7, 8 | syl6eq 2660 |
. . . . 5
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) = ∅) |
10 | | 0ss 3924 |
. . . . 5
⊢ ∅
⊆ 𝑈 |
11 | 9, 10 | syl6eqss 3618 |
. . . 4
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) ⊆ 𝑈) |
12 | 5, 6, 11 | 3syl 18 |
. . 3
⊢ (𝑈 = ∅ →
(𝑅1‘𝐴) ⊆ 𝑈) |
13 | 12 | a1i 11 |
. 2
⊢ (𝑈 ∈ Univ → (𝑈 = ∅ →
(𝑅1‘𝐴) ⊆ 𝑈)) |
14 | 1 | gruina 9519 |
. . . . 5
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc) |
15 | | inawina 9391 |
. . . . 5
⊢ (𝐴 ∈ Inacc → 𝐴 ∈
Inaccw) |
16 | | winaon 9389 |
. . . . . 6
⊢ (𝐴 ∈ Inaccw →
𝐴 ∈
On) |
17 | | winalim 9396 |
. . . . . 6
⊢ (𝐴 ∈ Inaccw →
Lim 𝐴) |
18 | | r1lim 8518 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ Lim 𝐴) →
(𝑅1‘𝐴) = ∪
𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
19 | 16, 17, 18 | syl2anc 691 |
. . . . 5
⊢ (𝐴 ∈ Inaccw →
(𝑅1‘𝐴) = ∪
𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
20 | 14, 15, 19 | 3syl 18 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(𝑅1‘𝐴) = ∪
𝑥 ∈ 𝐴 (𝑅1‘𝑥)) |
21 | | inss2 3796 |
. . . . . . . . . . . 12
⊢ (𝑈 ∩ On) ⊆
On |
22 | 1, 21 | eqsstri 3598 |
. . . . . . . . . . 11
⊢ 𝐴 ⊆ On |
23 | 22 | sseli 3564 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ On) |
24 | | eleq1 2676 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → (𝑥 ∈ 𝐴 ↔ ∅ ∈ 𝐴)) |
25 | | fveq2 6103 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) =
(𝑅1‘∅)) |
26 | 25, 8 | syl6eq 2660 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ∅ →
(𝑅1‘𝑥) = ∅) |
27 | 26 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ →
((𝑅1‘𝑥) ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
28 | 24, 27 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ∈ 𝑈) ↔ (∅ ∈ 𝐴 → ∅ ∈ 𝑈))) |
29 | | eleq1 2676 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
30 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘𝑦)) |
31 | 30 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘𝑦) ∈ 𝑈)) |
32 | 29, 31 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ∈ 𝑈) ↔ (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈))) |
33 | | eleq1 2676 |
. . . . . . . . . . . . 13
⊢ (𝑥 = suc 𝑦 → (𝑥 ∈ 𝐴 ↔ suc 𝑦 ∈ 𝐴)) |
34 | | fveq2 6103 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = suc 𝑦 → (𝑅1‘𝑥) =
(𝑅1‘suc 𝑦)) |
35 | 34 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑥 = suc 𝑦 → ((𝑅1‘𝑥) ∈ 𝑈 ↔ (𝑅1‘suc
𝑦) ∈ 𝑈)) |
36 | 33, 35 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑥 = suc 𝑦 → ((𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ∈ 𝑈) ↔ (suc 𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ∈ 𝑈))) |
37 | 3 | sseli 3564 |
. . . . . . . . . . . . 13
⊢ (∅
∈ 𝐴 → ∅
∈ 𝑈) |
38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ Univ → (∅
∈ 𝐴 → ∅
∈ 𝑈)) |
39 | | simpr 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → suc 𝑦 ∈ 𝐴) |
40 | | elelsuc 5714 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑦 ∈ 𝐴 → suc 𝑦 ∈ suc 𝐴) |
41 | 3 | sseli 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑦 ∈ 𝐴 → suc 𝑦 ∈ 𝑈) |
42 | | ne0i 3880 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc
𝑦 ∈ 𝑈 → 𝑈 ≠ ∅) |
43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑦 ∈ 𝐴 → 𝑈 ≠ ∅) |
44 | 14, 15, 16 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On) |
45 | 43, 44 | sylan2 490 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → 𝐴 ∈ On) |
46 | | eloni 5650 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ On → Ord 𝐴) |
47 | | ordsucelsuc 6914 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝐴 → (𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ suc 𝐴)) |
48 | 45, 46, 47 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → (𝑦 ∈ 𝐴 ↔ suc 𝑦 ∈ suc 𝐴)) |
49 | 40, 48 | syl5ibr 235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → (suc 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐴)) |
50 | 39, 49 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
51 | | grupw 9496 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧
(𝑅1‘𝑦) ∈ 𝑈) → 𝒫
(𝑅1‘𝑦) ∈ 𝑈) |
52 | 51 | ex 449 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ Univ →
((𝑅1‘𝑦) ∈ 𝑈 → 𝒫
(𝑅1‘𝑦) ∈ 𝑈)) |
53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → ((𝑅1‘𝑦) ∈ 𝑈 → 𝒫
(𝑅1‘𝑦) ∈ 𝑈)) |
54 | | r1suc 8516 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ On →
(𝑅1‘suc 𝑦) = 𝒫
(𝑅1‘𝑦)) |
55 | 54 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On →
((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫
(𝑅1‘𝑦) ∈ 𝑈)) |
56 | 55 | biimprcd 239 |
. . . . . . . . . . . . . . . . 17
⊢
(𝒫 (𝑅1‘𝑦) ∈ 𝑈 → (𝑦 ∈ On →
(𝑅1‘suc 𝑦) ∈ 𝑈)) |
57 | 53, 56 | syl6 34 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → ((𝑅1‘𝑦) ∈ 𝑈 → (𝑦 ∈ On →
(𝑅1‘suc 𝑦) ∈ 𝑈))) |
58 | 50, 57 | embantd 57 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ Univ ∧ suc 𝑦 ∈ 𝐴) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑦 ∈ On →
(𝑅1‘suc 𝑦) ∈ 𝑈))) |
59 | 58 | ex 449 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ Univ → (suc 𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑦 ∈ On →
(𝑅1‘suc 𝑦) ∈ 𝑈)))) |
60 | 59 | com23 84 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ Univ → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (suc 𝑦 ∈ 𝐴 → (𝑦 ∈ On →
(𝑅1‘suc 𝑦) ∈ 𝑈)))) |
61 | 60 | com4r 92 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ On → (𝑈 ∈ Univ → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (suc 𝑦 ∈ 𝐴 → (𝑅1‘suc
𝑦) ∈ 𝑈)))) |
62 | | simpr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
63 | 3 | sseli 3564 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑈) |
64 | | ne0i 3880 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ 𝑈 → 𝑈 ≠ ∅) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝐴 → 𝑈 ≠ ∅) |
66 | 65, 44 | sylan2 490 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ On) |
67 | | ontr1 5688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ On → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) |
68 | | pm2.27 41 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈)) |
69 | 67, 68 | syl6 34 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ On → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈))) |
70 | 69 | expd 451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ On → (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈)))) |
71 | 70 | com3r 85 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝐴 → (𝐴 ∈ On → (𝑦 ∈ 𝑥 → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈)))) |
72 | 62, 66, 71 | sylc 63 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝑥 → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈))) |
73 | 72 | imp 444 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝑥) → ((𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑦) ∈ 𝑈)) |
74 | 73 | ralimdva 2945 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → ∀𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈)) |
75 | | gruiun 9500 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈) → ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈) |
76 | 75 | 3expia 1259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈) → (∀𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈 → ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈)) |
77 | 63, 76 | sylan2 490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈 → ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈)) |
78 | 74, 77 | syld 46 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈)) |
79 | | vex 3176 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑥 ∈ V |
80 | | r1lim 8518 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
81 | 79, 80 | mpan 702 |
. . . . . . . . . . . . . . . . 17
⊢ (Lim
𝑥 →
(𝑅1‘𝑥) = ∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦)) |
82 | 81 | eleq1d 2672 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝑥 →
((𝑅1‘𝑥) ∈ 𝑈 ↔ ∪
𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈)) |
83 | 82 | biimprd 237 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝑥 → (∪ 𝑦 ∈ 𝑥 (𝑅1‘𝑦) ∈ 𝑈 → (𝑅1‘𝑥) ∈ 𝑈)) |
84 | 78, 83 | sylan9r 688 |
. . . . . . . . . . . . . 14
⊢ ((Lim
𝑥 ∧ (𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴)) → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑥) ∈ 𝑈)) |
85 | 84 | exp32 629 |
. . . . . . . . . . . . 13
⊢ (Lim
𝑥 → (𝑈 ∈ Univ → (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑅1‘𝑥) ∈ 𝑈)))) |
86 | 85 | com34 89 |
. . . . . . . . . . . 12
⊢ (Lim
𝑥 → (𝑈 ∈ Univ → (∀𝑦 ∈ 𝑥 (𝑦 ∈ 𝐴 → (𝑅1‘𝑦) ∈ 𝑈) → (𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ∈ 𝑈)))) |
87 | 28, 32, 36, 38, 61, 86 | tfinds2 6955 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑥 ∈ 𝐴 → (𝑅1‘𝑥) ∈ 𝑈))) |
88 | 87 | com3r 85 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ On → (𝑈 ∈ Univ →
(𝑅1‘𝑥) ∈ 𝑈))) |
89 | 23, 88 | mpd 15 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝑈 ∈ Univ →
(𝑅1‘𝑥) ∈ 𝑈)) |
90 | 89 | impcom 445 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) ∈ 𝑈) |
91 | | gruelss 9495 |
. . . . . . . 8
⊢ ((𝑈 ∈ Univ ∧
(𝑅1‘𝑥) ∈ 𝑈) → (𝑅1‘𝑥) ⊆ 𝑈) |
92 | 90, 91 | syldan 486 |
. . . . . . 7
⊢ ((𝑈 ∈ Univ ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝑥) ⊆ 𝑈) |
93 | 92 | ralrimiva 2949 |
. . . . . 6
⊢ (𝑈 ∈ Univ →
∀𝑥 ∈ 𝐴
(𝑅1‘𝑥) ⊆ 𝑈) |
94 | | iunss 4497 |
. . . . . 6
⊢ (∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) ⊆ 𝑈 ↔ ∀𝑥 ∈ 𝐴 (𝑅1‘𝑥) ⊆ 𝑈) |
95 | 93, 94 | sylibr 223 |
. . . . 5
⊢ (𝑈 ∈ Univ → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) ⊆ 𝑈) |
96 | 95 | adantr 480 |
. . . 4
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → ∪ 𝑥 ∈ 𝐴 (𝑅1‘𝑥) ⊆ 𝑈) |
97 | 20, 96 | eqsstrd 3602 |
. . 3
⊢ ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) →
(𝑅1‘𝐴) ⊆ 𝑈) |
98 | 97 | ex 449 |
. 2
⊢ (𝑈 ∈ Univ → (𝑈 ≠ ∅ →
(𝑅1‘𝐴) ⊆ 𝑈)) |
99 | 13, 98 | pm2.61dne 2868 |
1
⊢ (𝑈 ∈ Univ →
(𝑅1‘𝐴) ⊆ 𝑈) |