MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grur1a Structured version   Visualization version   GIF version

Theorem grur1a 9520
Description: A characterization of Grothendieck universes, part 1. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
gruina.1 𝐴 = (𝑈 ∩ On)
Assertion
Ref Expression
grur1a (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)

Proof of Theorem grur1a
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gruina.1 . . . . . 6 𝐴 = (𝑈 ∩ On)
2 inss1 3795 . . . . . 6 (𝑈 ∩ On) ⊆ 𝑈
31, 2eqsstri 3598 . . . . 5 𝐴𝑈
4 sseq2 3590 . . . . 5 (𝑈 = ∅ → (𝐴𝑈𝐴 ⊆ ∅))
53, 4mpbii 222 . . . 4 (𝑈 = ∅ → 𝐴 ⊆ ∅)
6 ss0 3926 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
7 fveq2 6103 . . . . . 6 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
8 r10 8514 . . . . . 6 (𝑅1‘∅) = ∅
97, 8syl6eq 2660 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
10 0ss 3924 . . . . 5 ∅ ⊆ 𝑈
119, 10syl6eqss 3618 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
125, 6, 113syl 18 . . 3 (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈)
1312a1i 11 . 2 (𝑈 ∈ Univ → (𝑈 = ∅ → (𝑅1𝐴) ⊆ 𝑈))
141gruina 9519 . . . . 5 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ Inacc)
15 inawina 9391 . . . . 5 (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw)
16 winaon 9389 . . . . . 6 (𝐴 ∈ Inaccw𝐴 ∈ On)
17 winalim 9396 . . . . . 6 (𝐴 ∈ Inaccw → Lim 𝐴)
18 r1lim 8518 . . . . . 6 ((𝐴 ∈ On ∧ Lim 𝐴) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
1916, 17, 18syl2anc 691 . . . . 5 (𝐴 ∈ Inaccw → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
2014, 15, 193syl 18 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) = 𝑥𝐴 (𝑅1𝑥))
21 inss2 3796 . . . . . . . . . . . 12 (𝑈 ∩ On) ⊆ On
221, 21eqsstri 3598 . . . . . . . . . . 11 𝐴 ⊆ On
2322sseli 3564 . . . . . . . . . 10 (𝑥𝐴𝑥 ∈ On)
24 eleq1 2676 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ∈ 𝐴))
25 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
2625, 8syl6eq 2660 . . . . . . . . . . . . . 14 (𝑥 = ∅ → (𝑅1𝑥) = ∅)
2726eleq1d 2672 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2824, 27imbi12d 333 . . . . . . . . . . . 12 (𝑥 = ∅ → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (∅ ∈ 𝐴 → ∅ ∈ 𝑈)))
29 eleq1 2676 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
30 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
3130eleq1d 2672 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1𝑦) ∈ 𝑈))
3229, 31imbi12d 333 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈)))
33 eleq1 2676 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → (𝑥𝐴 ↔ suc 𝑦𝐴))
34 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
3534eleq1d 2672 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑈 ↔ (𝑅1‘suc 𝑦) ∈ 𝑈))
3633, 35imbi12d 333 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈) ↔ (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈)))
373sseli 3564 . . . . . . . . . . . . 13 (∅ ∈ 𝐴 → ∅ ∈ 𝑈)
3837a1i 11 . . . . . . . . . . . 12 (𝑈 ∈ Univ → (∅ ∈ 𝐴 → ∅ ∈ 𝑈))
39 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → suc 𝑦𝐴)
40 elelsuc 5714 . . . . . . . . . . . . . . . . . 18 (suc 𝑦𝐴 → suc 𝑦 ∈ suc 𝐴)
413sseli 3564 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑦𝐴 → suc 𝑦𝑈)
42 ne0i 3880 . . . . . . . . . . . . . . . . . . . . 21 (suc 𝑦𝑈𝑈 ≠ ∅)
4341, 42syl 17 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑦𝐴𝑈 ≠ ∅)
4414, 15, 163syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝐴 ∈ On)
4543, 44sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝐴 ∈ On)
46 eloni 5650 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → Ord 𝐴)
47 ordsucelsuc 6914 . . . . . . . . . . . . . . . . . . 19 (Ord 𝐴 → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4845, 46, 473syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (𝑦𝐴 ↔ suc 𝑦 ∈ suc 𝐴))
4940, 48syl5ibr 235 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → (suc 𝑦𝐴𝑦𝐴))
5039, 49mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → 𝑦𝐴)
51 grupw 9496 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ (𝑅1𝑦) ∈ 𝑈) → 𝒫 (𝑅1𝑦) ∈ 𝑈)
5251ex 449 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ Univ → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
5352adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → 𝒫 (𝑅1𝑦) ∈ 𝑈))
54 r1suc 8516 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
5554eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → ((𝑅1‘suc 𝑦) ∈ 𝑈 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑈))
5655biimprcd 239 . . . . . . . . . . . . . . . . 17 (𝒫 (𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))
5753, 56syl6 34 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑅1𝑦) ∈ 𝑈 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5850, 57embantd 57 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ suc 𝑦𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈)))
5958ex 449 . . . . . . . . . . . . . 14 (𝑈 ∈ Univ → (suc 𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
6059com23 84 . . . . . . . . . . . . 13 (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑦 ∈ On → (𝑅1‘suc 𝑦) ∈ 𝑈))))
6160com4r 92 . . . . . . . . . . . 12 (𝑦 ∈ On → (𝑈 ∈ Univ → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (suc 𝑦𝐴 → (𝑅1‘suc 𝑦) ∈ 𝑈))))
62 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝑥𝐴)
633sseli 3564 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴𝑥𝑈)
64 ne0i 3880 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝑈𝑈 ≠ ∅)
6563, 64syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝑈 ≠ ∅)
6665, 44sylan2 490 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → 𝐴 ∈ On)
67 ontr1 5688 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
68 pm2.27 41 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
6967, 68syl6 34 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ On → ((𝑦𝑥𝑥𝐴) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
7069expd 451 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ On → (𝑦𝑥 → (𝑥𝐴 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
7170com3r 85 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝐴 ∈ On → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))))
7262, 66, 71sylc 63 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑦𝑥 → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈)))
7372imp 444 . . . . . . . . . . . . . . . . 17 (((𝑈 ∈ Univ ∧ 𝑥𝐴) ∧ 𝑦𝑥) → ((𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑦) ∈ 𝑈))
7473ralimdva 2945 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
75 gruiun 9500 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ Univ ∧ 𝑥𝑈 ∧ ∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈)
76753expia 1259 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ Univ ∧ 𝑥𝑈) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7763, 76sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
7874, 77syld 46 . . . . . . . . . . . . . . 15 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
79 vex 3176 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
80 r1lim 8518 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ V ∧ Lim 𝑥) → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8179, 80mpan 702 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑅1𝑥) = 𝑦𝑥 (𝑅1𝑦))
8281eleq1d 2672 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → ((𝑅1𝑥) ∈ 𝑈 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈))
8382biimprd 237 . . . . . . . . . . . . . . 15 (Lim 𝑥 → ( 𝑦𝑥 (𝑅1𝑦) ∈ 𝑈 → (𝑅1𝑥) ∈ 𝑈))
8478, 83sylan9r 688 . . . . . . . . . . . . . 14 ((Lim 𝑥 ∧ (𝑈 ∈ Univ ∧ 𝑥𝐴)) → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))
8584exp32 629 . . . . . . . . . . . . 13 (Lim 𝑥 → (𝑈 ∈ Univ → (𝑥𝐴 → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑅1𝑥) ∈ 𝑈))))
8685com34 89 . . . . . . . . . . . 12 (Lim 𝑥 → (𝑈 ∈ Univ → (∀𝑦𝑥 (𝑦𝐴 → (𝑅1𝑦) ∈ 𝑈) → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈))))
8728, 32, 36, 38, 61, 86tfinds2 6955 . . . . . . . . . . 11 (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑥𝐴 → (𝑅1𝑥) ∈ 𝑈)))
8887com3r 85 . . . . . . . . . 10 (𝑥𝐴 → (𝑥 ∈ On → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈)))
8923, 88mpd 15 . . . . . . . . 9 (𝑥𝐴 → (𝑈 ∈ Univ → (𝑅1𝑥) ∈ 𝑈))
9089impcom 445 . . . . . . . 8 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ∈ 𝑈)
91 gruelss 9495 . . . . . . . 8 ((𝑈 ∈ Univ ∧ (𝑅1𝑥) ∈ 𝑈) → (𝑅1𝑥) ⊆ 𝑈)
9290, 91syldan 486 . . . . . . 7 ((𝑈 ∈ Univ ∧ 𝑥𝐴) → (𝑅1𝑥) ⊆ 𝑈)
9392ralrimiva 2949 . . . . . 6 (𝑈 ∈ Univ → ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
94 iunss 4497 . . . . . 6 ( 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈 ↔ ∀𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9593, 94sylibr 223 . . . . 5 (𝑈 ∈ Univ → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9695adantr 480 . . . 4 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → 𝑥𝐴 (𝑅1𝑥) ⊆ 𝑈)
9720, 96eqsstrd 3602 . . 3 ((𝑈 ∈ Univ ∧ 𝑈 ≠ ∅) → (𝑅1𝐴) ⊆ 𝑈)
9897ex 449 . 2 (𝑈 ∈ Univ → (𝑈 ≠ ∅ → (𝑅1𝐴) ⊆ 𝑈))
9913, 98pm2.61dne 2868 1 (𝑈 ∈ Univ → (𝑅1𝐴) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   ciun 4455  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642  cfv 5804  𝑅1cr1 8508  Inaccwcwina 9383  Inacccina 9384  Univcgru 9491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-r1 8510  df-card 8648  df-cf 8650  df-ac 8822  df-wina 9385  df-ina 9386  df-gru 9492
This theorem is referenced by:  grur1  9521
  Copyright terms: Public domain W3C validator