Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruelss Structured version   Visualization version   GIF version

Theorem gruelss 9495
 Description: A Grothendieck universe is transitive, so each element is a subset of the universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruelss ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)

Proof of Theorem gruelss
StepHypRef Expression
1 grutr 9494 . 2 (𝑈 ∈ Univ → Tr 𝑈)
2 trss 4689 . . 3 (Tr 𝑈 → (𝐴𝑈𝐴𝑈))
32imp 444 . 2 ((Tr 𝑈𝐴𝑈) → 𝐴𝑈)
41, 3sylan 487 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈) → 𝐴𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977   ⊆ wss 3540  Tr wtr 4680  Univcgru 9491 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-tr 4681  df-iota 5768  df-fv 5812  df-ov 6552  df-gru 9492 This theorem is referenced by:  gruss  9497  gruuni  9501  gruel  9504  grur1a  9520  grur1  9521
 Copyright terms: Public domain W3C validator