Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpss | Structured version Visualization version GIF version |
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows us to prove that a constructed potential ring 𝑅 is a group before we know that it is also a ring. (Theorem ringgrp 18375, on the other hand, requires that we know in advance that 𝑅 is a ring.) (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpss.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
grpss.r | ⊢ 𝑅 ∈ V |
grpss.s | ⊢ 𝐺 ⊆ 𝑅 |
grpss.f | ⊢ Fun 𝑅 |
Ref | Expression |
---|---|
grpss | ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpss.r | . . . 4 ⊢ 𝑅 ∈ V | |
2 | grpss.f | . . . 4 ⊢ Fun 𝑅 | |
3 | grpss.s | . . . 4 ⊢ 𝐺 ⊆ 𝑅 | |
4 | baseid 15747 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
5 | opex 4859 | . . . . . 6 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ V | |
6 | 5 | prid1 4241 | . . . . 5 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
7 | grpss.g | . . . . 5 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} | |
8 | 6, 7 | eleqtrri 2687 | . . . 4 ⊢ 〈(Base‘ndx), 𝐵〉 ∈ 𝐺 |
9 | 1, 2, 3, 4, 8 | strss 15738 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
10 | plusgid 15804 | . . . 4 ⊢ +g = Slot (+g‘ndx) | |
11 | opex 4859 | . . . . . 6 ⊢ 〈(+g‘ndx), + 〉 ∈ V | |
12 | 11 | prid2 4242 | . . . . 5 ⊢ 〈(+g‘ndx), + 〉 ∈ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉} |
13 | 12, 7 | eleqtrri 2687 | . . . 4 ⊢ 〈(+g‘ndx), + 〉 ∈ 𝐺 |
14 | 1, 2, 3, 10, 13 | strss 15738 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝐺) |
15 | 9, 14 | grpprop 17261 | . 2 ⊢ (𝑅 ∈ Grp ↔ 𝐺 ∈ Grp) |
16 | 15 | bicomi 213 | 1 ⊢ (𝐺 ∈ Grp ↔ 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 {cpr 4127 〈cop 4131 Fun wfun 5798 ‘cfv 5804 ndxcnx 15692 Basecbs 15695 +gcplusg 15768 Grpcgrp 17245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-i2m1 9883 ax-1ne0 9884 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |