MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvf Structured version   Visualization version   GIF version

Theorem grpoinvf 26770
Description: Mapping of the inverse function of a group. (Contributed by NM, 29-Mar-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvf (𝐺 ∈ GrpOp → 𝑁:𝑋1-1-onto𝑋)

Proof of Theorem grpoinvf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6515 . . . 4 (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺)) ∈ V
2 eqid 2610 . . . 4 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺)))
31, 2fnmpti 5935 . . 3 (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))) Fn 𝑋
4 grpasscan1.1 . . . . 5 𝑋 = ran 𝐺
5 eqid 2610 . . . . 5 (GId‘𝐺) = (GId‘𝐺)
6 grpasscan1.2 . . . . 5 𝑁 = (inv‘𝐺)
74, 5, 6grpoinvfval 26760 . . . 4 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))))
87fneq1d 5895 . . 3 (𝐺 ∈ GrpOp → (𝑁 Fn 𝑋 ↔ (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = (GId‘𝐺))) Fn 𝑋))
93, 8mpbiri 247 . 2 (𝐺 ∈ GrpOp → 𝑁 Fn 𝑋)
10 fnrnfv 6152 . . . 4 (𝑁 Fn 𝑋 → ran 𝑁 = {𝑦 ∣ ∃𝑥𝑋 𝑦 = (𝑁𝑥)})
119, 10syl 17 . . 3 (𝐺 ∈ GrpOp → ran 𝑁 = {𝑦 ∣ ∃𝑥𝑋 𝑦 = (𝑁𝑥)})
124, 6grpoinvcl 26762 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → (𝑁𝑦) ∈ 𝑋)
134, 6grpo2inv 26769 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → (𝑁‘(𝑁𝑦)) = 𝑦)
1413eqcomd 2616 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → 𝑦 = (𝑁‘(𝑁𝑦)))
15 fveq2 6103 . . . . . . . . 9 (𝑥 = (𝑁𝑦) → (𝑁𝑥) = (𝑁‘(𝑁𝑦)))
1615eqeq2d 2620 . . . . . . . 8 (𝑥 = (𝑁𝑦) → (𝑦 = (𝑁𝑥) ↔ 𝑦 = (𝑁‘(𝑁𝑦))))
1716rspcev 3282 . . . . . . 7 (((𝑁𝑦) ∈ 𝑋𝑦 = (𝑁‘(𝑁𝑦))) → ∃𝑥𝑋 𝑦 = (𝑁𝑥))
1812, 14, 17syl2anc 691 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → ∃𝑥𝑋 𝑦 = (𝑁𝑥))
1918ex 449 . . . . 5 (𝐺 ∈ GrpOp → (𝑦𝑋 → ∃𝑥𝑋 𝑦 = (𝑁𝑥)))
20 simpr 476 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ 𝑦 = (𝑁𝑥)) → 𝑦 = (𝑁𝑥))
214, 6grpoinvcl 26762 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋) → (𝑁𝑥) ∈ 𝑋)
2221adantr 480 . . . . . . . 8 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ 𝑦 = (𝑁𝑥)) → (𝑁𝑥) ∈ 𝑋)
2320, 22eqeltrd 2688 . . . . . . 7 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ 𝑦 = (𝑁𝑥)) → 𝑦𝑋)
2423exp31 628 . . . . . 6 (𝐺 ∈ GrpOp → (𝑥𝑋 → (𝑦 = (𝑁𝑥) → 𝑦𝑋)))
2524rexlimdv 3012 . . . . 5 (𝐺 ∈ GrpOp → (∃𝑥𝑋 𝑦 = (𝑁𝑥) → 𝑦𝑋))
2619, 25impbid 201 . . . 4 (𝐺 ∈ GrpOp → (𝑦𝑋 ↔ ∃𝑥𝑋 𝑦 = (𝑁𝑥)))
2726abbi2dv 2729 . . 3 (𝐺 ∈ GrpOp → 𝑋 = {𝑦 ∣ ∃𝑥𝑋 𝑦 = (𝑁𝑥)})
2811, 27eqtr4d 2647 . 2 (𝐺 ∈ GrpOp → ran 𝑁 = 𝑋)
29 fveq2 6103 . . . 4 ((𝑁𝑥) = (𝑁𝑦) → (𝑁‘(𝑁𝑥)) = (𝑁‘(𝑁𝑦)))
304, 6grpo2inv 26769 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋) → (𝑁‘(𝑁𝑥)) = 𝑥)
3130, 13eqeqan12d 2626 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝑥𝑋) ∧ (𝐺 ∈ GrpOp ∧ 𝑦𝑋)) → ((𝑁‘(𝑁𝑥)) = (𝑁‘(𝑁𝑦)) ↔ 𝑥 = 𝑦))
3231anandis 869 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑁‘(𝑁𝑥)) = (𝑁‘(𝑁𝑦)) ↔ 𝑥 = 𝑦))
3329, 32syl5ib 233 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋𝑦𝑋)) → ((𝑁𝑥) = (𝑁𝑦) → 𝑥 = 𝑦))
3433ralrimivva 2954 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋 ((𝑁𝑥) = (𝑁𝑦) → 𝑥 = 𝑦))
35 dff1o6 6431 . 2 (𝑁:𝑋1-1-onto𝑋 ↔ (𝑁 Fn 𝑋 ∧ ran 𝑁 = 𝑋 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑁𝑥) = (𝑁𝑦) → 𝑥 = 𝑦)))
369, 28, 34, 35syl3anbrc 1239 1 (𝐺 ∈ GrpOp → 𝑁:𝑋1-1-onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cmpt 4643  ran crn 5039   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  crio 6510  (class class class)co 6549  GrpOpcgr 26727  GIdcgi 26728  invcgn 26729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-grpo 26731  df-gid 26732  df-ginv 26733
This theorem is referenced by:  nvinvfval  26879
  Copyright terms: Public domain W3C validator