MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplrinv Structured version   Visualization version   GIF version

Theorem grplrinv 17296
Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grplrinv (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Distinct variable groups:   𝑦,𝐵   𝑥,𝐺,𝑦   𝑦, +   𝑦, 0
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)   0 (𝑥)

Proof of Theorem grplrinv
StepHypRef Expression
1 grplrinv.b . . . 4 𝐵 = (Base‘𝐺)
2 eqid 2610 . . . 4 (invg𝐺) = (invg𝐺)
31, 2grpinvcl 17290 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((invg𝐺)‘𝑥) ∈ 𝐵)
4 oveq1 6556 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑦 + 𝑥) = (((invg𝐺)‘𝑥) + 𝑥))
54eqeq1d 2612 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑦 + 𝑥) = 0 ↔ (((invg𝐺)‘𝑥) + 𝑥) = 0 ))
6 oveq2 6557 . . . . . 6 (𝑦 = ((invg𝐺)‘𝑥) → (𝑥 + 𝑦) = (𝑥 + ((invg𝐺)‘𝑥)))
76eqeq1d 2612 . . . . 5 (𝑦 = ((invg𝐺)‘𝑥) → ((𝑥 + 𝑦) = 0 ↔ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
85, 7anbi12d 743 . . . 4 (𝑦 = ((invg𝐺)‘𝑥) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
98adantl 481 . . 3 (((𝐺 ∈ Grp ∧ 𝑥𝐵) ∧ 𝑦 = ((invg𝐺)‘𝑥)) → (((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ) ↔ ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 )))
10 grplrinv.p . . . . 5 + = (+g𝐺)
11 grplrinv.i . . . . 5 0 = (0g𝐺)
121, 10, 11, 2grplinv 17291 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (((invg𝐺)‘𝑥) + 𝑥) = 0 )
131, 10, 11, 2grprinv 17292 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑥 + ((invg𝐺)‘𝑥)) = 0 )
1412, 13jca 553 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((invg𝐺)‘𝑥) + 𝑥) = 0 ∧ (𝑥 + ((invg𝐺)‘𝑥)) = 0 ))
153, 9, 14rspcedvd 3289 . 2 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
1615ralrimiva 2949 1 (𝐺 ∈ Grp → ∀𝑥𝐵𝑦𝐵 ((𝑦 + 𝑥) = 0 ∧ (𝑥 + 𝑦) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  grpidinv2  17297
  Copyright terms: Public domain W3C validator