Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvadd Structured version   Visualization version   GIF version

 Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.)
Hypotheses
Ref Expression
Assertion
Ref Expression
grpinvadd ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))

StepHypRef Expression
1 simp1 1054 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1055 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1056 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 grpinvadd.b . . . . . . 7 𝐵 = (Base‘𝐺)
5 grpinvadd.n . . . . . . 7 𝑁 = (invg𝐺)
64, 5grpinvcl 17290 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
763adant2 1073 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
84, 5grpinvcl 17290 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
983adant3 1074 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁𝑋) ∈ 𝐵)
10 grpinvadd.p . . . . . 6 + = (+g𝐺)
114, 10grpcl 17253 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
121, 7, 9, 11syl3anc 1318 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)
134, 10grpass 17254 . . . 4 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
141, 2, 3, 12, 13syl13anc 1320 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))))
15 eqid 2610 . . . . . . . 8 (0g𝐺) = (0g𝐺)
164, 10, 15, 5grprinv 17292 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
17163adant2 1073 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + (𝑁𝑌)) = (0g𝐺))
1817oveq1d 6564 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = ((0g𝐺) + (𝑁𝑋)))
194, 10grpass 17254 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑌𝐵 ∧ (𝑁𝑌) ∈ 𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
201, 3, 7, 9, 19syl13anc 1320 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑌 + (𝑁𝑌)) + (𝑁𝑋)) = (𝑌 + ((𝑁𝑌) + (𝑁𝑋))))
214, 10, 15grplid 17275 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
221, 9, 21syl2anc 691 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + (𝑁𝑋)) = (𝑁𝑋))
2318, 20, 223eqtr3d 2652 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑌 + ((𝑁𝑌) + (𝑁𝑋))) = (𝑁𝑋))
2423oveq2d 6565 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 + ((𝑁𝑌) + (𝑁𝑋)))) = (𝑋 + (𝑁𝑋)))
254, 10, 15, 5grprinv 17292 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
26253adant3 1074 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
2714, 24, 263eqtrd 2648 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺))
284, 10grpcl 17253 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
294, 10, 15, 5grpinvid1 17293 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + 𝑌) ∈ 𝐵 ∧ ((𝑁𝑌) + (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
301, 28, 12, 29syl3anc 1318 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)) ↔ ((𝑋 + 𝑌) + ((𝑁𝑌) + (𝑁𝑋))) = (0g𝐺)))
3127, 30mpbird 246 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁𝑌) + (𝑁𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249 This theorem is referenced by:  grpinvsub  17320  mulgaddcomlem  17386  mulginvcom  17388  mulgdir  17396  eqger  17467  eqgcpbl  17471  invoppggim  17613  sylow2blem1  17858  lsmsubg  17892  ablinvadd  18038  ablsub2inv  18039  invghm  18062  rdivmuldivd  29122  dvrcan5  29124
 Copyright terms: Public domain W3C validator