MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  graop Structured version   Visualization version   GIF version

Theorem graop 25706
Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.)
Hypothesis
Ref Expression
graop.h 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
Assertion
Ref Expression
graop ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))

Proof of Theorem graop
StepHypRef Expression
1 graop.h . . . 4 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
21fveq2i 6106 . . 3 (Vtx‘𝐻) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
3 fvex 6113 . . . 4 (Vtx‘𝐺) ∈ V
4 fvex 6113 . . . 4 (iEdg‘𝐺) ∈ V
5 opvtxfv 25681 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺))
63, 4, 5mp2an 704 . . 3 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
72, 6eqtr2i 2633 . 2 (Vtx‘𝐺) = (Vtx‘𝐻)
81fveq2i 6106 . . 3 (iEdg‘𝐻) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
9 opiedgfv 25684 . . . 4 (((Vtx‘𝐺) ∈ V ∧ (iEdg‘𝐺) ∈ V) → (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺))
103, 4, 9mp2an 704 . . 3 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
118, 10eqtr2i 2633 . 2 (iEdg‘𝐺) = (iEdg‘𝐻)
127, 11pm3.2i 470 1 ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-1st 7059  df-2nd 7060  df-vtx 25675  df-iedg 25676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator