Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispaceel2 Structured version   Visualization version   GIF version

Theorem gneispaceel2 37462
Description: Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispaceel2 ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛   𝑛,𝑁
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)   𝑁(𝑓,𝑠,𝑝)

Proof of Theorem gneispaceel2
StepHypRef Expression
1 gneispace.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispaceel 37461 . . . 4 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛)
3 fveq2 6103 . . . . . 6 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
4 eleq1 2676 . . . . . 6 (𝑝 = 𝑃 → (𝑝𝑛𝑃𝑛))
53, 4raleqbidv 3129 . . . . 5 (𝑝 = 𝑃 → (∀𝑛 ∈ (𝐹𝑝)𝑝𝑛 ↔ ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
65rspccv 3279 . . . 4 (∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)𝑝𝑛 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
72, 6syl 17 . . 3 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑃)𝑃𝑛))
8 eleq2 2677 . . . 4 (𝑛 = 𝑁 → (𝑃𝑛𝑃𝑁))
98rspccv 3279 . . 3 (∀𝑛 ∈ (𝐹𝑃)𝑃𝑛 → (𝑁 ∈ (𝐹𝑃) → 𝑃𝑁))
107, 9syl6 34 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝑁 ∈ (𝐹𝑃) → 𝑃𝑁)))
11103imp 1249 1 ((𝐹𝐴𝑃 ∈ dom 𝐹𝑁 ∈ (𝐹𝑃)) → 𝑃𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  cdif 3537  wss 3540  c0 3874  𝒫 cpw 4108  {csn 4125  dom cdm 5038  wf 5800  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator