MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbfval Structured version   Visualization version   GIF version

Theorem glbfval 16814
Description: Value of the greatest lower function of a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 6-Sep-2018.)
Hypotheses
Ref Expression
glbfval.b 𝐵 = (Base‘𝐾)
glbfval.l = (le‘𝐾)
glbfval.g 𝐺 = (glb‘𝐾)
glbfval.p (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
glbfval.k (𝜑𝐾𝑉)
Assertion
Ref Expression
glbfval (𝜑𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Distinct variable groups:   𝑥,𝑠,𝑧,𝐵   𝑦,𝑠,𝐾,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑠)   𝜓(𝑥,𝑦,𝑧,𝑠)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧,𝑠)   (𝑥,𝑦,𝑧,𝑠)   𝑉(𝑥,𝑦,𝑧,𝑠)

Proof of Theorem glbfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 glbfval.k . 2 (𝜑𝐾𝑉)
2 elex 3185 . 2 (𝐾𝑉𝐾 ∈ V)
3 fveq2 6103 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 glbfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2662 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65pweqd 4113 . . . . . 6 (𝑝 = 𝐾 → 𝒫 (Base‘𝑝) = 𝒫 𝐵)
7 fveq2 6103 . . . . . . . . . . 11 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
8 glbfval.l . . . . . . . . . . 11 = (le‘𝐾)
97, 8syl6eqr 2662 . . . . . . . . . 10 (𝑝 = 𝐾 → (le‘𝑝) = )
109breqd 4594 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑥(le‘𝑝)𝑦𝑥 𝑦))
1110ralbidv 2969 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ↔ ∀𝑦𝑠 𝑥 𝑦))
129breqd 4594 . . . . . . . . . . 11 (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑦𝑧 𝑦))
1312ralbidv 2969 . . . . . . . . . 10 (𝑝 = 𝐾 → (∀𝑦𝑠 𝑧(le‘𝑝)𝑦 ↔ ∀𝑦𝑠 𝑧 𝑦))
149breqd 4594 . . . . . . . . . 10 (𝑝 = 𝐾 → (𝑧(le‘𝑝)𝑥𝑧 𝑥))
1513, 14imbi12d 333 . . . . . . . . 9 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥) ↔ (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
165, 15raleqbidv 3129 . . . . . . . 8 (𝑝 = 𝐾 → (∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
1711, 16anbi12d 743 . . . . . . 7 (𝑝 = 𝐾 → ((∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
185, 17riotaeqbidv 6514 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))) = (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
196, 18mpteq12dv 4663 . . . . 5 (𝑝 = 𝐾 → (𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))))
2017reubidv 3103 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
21 reueq1 3117 . . . . . . . 8 ((Base‘𝑝) = 𝐵 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
225, 21syl 17 . . . . . . 7 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
2320, 22bitrd 267 . . . . . 6 (𝑝 = 𝐾 → (∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)) ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
2423abbidv 2728 . . . . 5 (𝑝 = 𝐾 → {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
2519, 24reseq12d 5318 . . . 4 (𝑝 = 𝐾 → ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
26 df-glb 16798 . . . 4 glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))}))
27 fvex 6113 . . . . . . . 8 (Base‘𝐾) ∈ V
284, 27eqeltri 2684 . . . . . . 7 𝐵 ∈ V
2928pwex 4774 . . . . . 6 𝒫 𝐵 ∈ V
3029mptex 6390 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ∈ V
3130resex 5363 . . . 4 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}) ∈ V
3225, 26, 31fvmpt 6191 . . 3 (𝐾 ∈ V → (glb‘𝐾) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
33 glbfval.g . . 3 𝐺 = (glb‘𝐾)
34 glbfval.p . . . . . . 7 (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
3534a1i 11 . . . . . 6 (𝑥𝐵 → (𝜓 ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
3635riotabiia 6528 . . . . 5 (𝑥𝐵 𝜓) = (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
3736mpteq2i 4669 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
3834reubii 3105 . . . . 5 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
3938abbii 2726 . . . 4 {𝑠 ∣ ∃!𝑥𝐵 𝜓} = {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}
4037, 39reseq12i 5315 . . 3 ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
4132, 33, 403eqtr4g 2669 . 2 (𝐾 ∈ V → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
421, 2, 413syl 18 1 (𝜑𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 𝜓)) ↾ {𝑠 ∣ ∃!𝑥𝐵 𝜓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  ∃!wreu 2898  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  cres 5040  cfv 5804  crio 6510  Basecbs 15695  lecple 15775  glbcglb 16766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-glb 16798
This theorem is referenced by:  glbdm  16815  glbfun  16816  glbval  16820  meet0  16960  oduglb  16962  odulub  16964
  Copyright terms: Public domain W3C validator