Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimcnv Structured version   Visualization version   GIF version

Theorem gimcnv 17532
 Description: The converse of a bijective group homomorphism is a bijective group homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
gimcnv (𝐹 ∈ (𝑆 GrpIso 𝑇) → 𝐹 ∈ (𝑇 GrpIso 𝑆))

Proof of Theorem gimcnv
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2610 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 17487 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
4 frel 5963 . . . . . . 7 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹)
5 dfrel2 5502 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 207 . . . . . 6 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 = 𝐹)
73, 6syl 17 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 = 𝐹)
8 id 22 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
97, 8eqeltrd 2688 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
109anim2i 591 . . 3 ((𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
1110ancoms 468 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → (𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
12 isgim2 17530 . 2 (𝐹 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)))
13 isgim2 17530 . 2 (𝐹 ∈ (𝑇 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
1411, 12, 133imtr4i 280 1 (𝐹 ∈ (𝑆 GrpIso 𝑇) → 𝐹 ∈ (𝑇 GrpIso 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ◡ccnv 5037  Rel wrel 5043  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Basecbs 15695   GrpHom cghm 17480   GrpIso cgim 17522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ghm 17481  df-gim 17524 This theorem is referenced by:  gicsym  17539  reloggim  24149  abliso  29027
 Copyright terms: Public domain W3C validator