Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gidsn | Structured version Visualization version GIF version |
Description: Obsolete as of 23-Jan-2020. Use mnd1id 17155 instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ablsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
gidsn | ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | grposnOLD 32851 | . 2 ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp |
3 | opex 4859 | . . . . 5 ⊢ 〈𝐴, 𝐴〉 ∈ V | |
4 | 3 | rnsnop 5534 | . . . 4 ⊢ ran {〈〈𝐴, 𝐴〉, 𝐴〉} = {𝐴} |
5 | 4 | eqcomi 2619 | . . 3 ⊢ {𝐴} = ran {〈〈𝐴, 𝐴〉, 𝐴〉} |
6 | eqid 2610 | . . 3 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) | |
7 | 5, 6 | grpoidcl 26752 | . 2 ⊢ ({〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴}) |
8 | elsni 4142 | . 2 ⊢ ((GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) ∈ {𝐴} → (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴) | |
9 | 2, 7, 8 | mp2b 10 | 1 ⊢ (GId‘{〈〈𝐴, 𝐴〉, 𝐴〉}) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 〈cop 4131 ran crn 5039 ‘cfv 5804 GrpOpcgr 26727 GIdcgi 26728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-grpo 26731 df-gid 26732 |
This theorem is referenced by: zrdivrng 32922 |
Copyright terms: Public domain | W3C validator |