Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gicabl Structured version   Visualization version   GIF version

Theorem gicabl 36687
Description: Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.)
Assertion
Ref Expression
gicabl (𝐺𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))

Proof of Theorem gicabl
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 17534 . 2 (𝐺𝑔 𝐻 ↔ (𝐺 GrpIso 𝐻) ≠ ∅)
2 n0 3890 . . 3 ((𝐺 GrpIso 𝐻) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 GrpIso 𝐻))
3 gimghm 17529 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥 ∈ (𝐺 GrpHom 𝐻))
4 ghmgrp1 17485 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐺 ∈ Grp)
6 ghmgrp2 17486 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
73, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐻 ∈ Grp)
85, 72thd 254 . . . . . 6 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Grp ↔ 𝐻 ∈ Grp))
9 grpmnd 17252 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
105, 9syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐺 ∈ Mnd)
11 grpmnd 17252 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
127, 11syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐻 ∈ Mnd)
1310, 122thd 254 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Mnd ↔ 𝐻 ∈ Mnd))
14 eqid 2610 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2610 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
1614, 15gimf1o 17528 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻))
17 f1of1 6049 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
1816, 17syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
1918adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
205adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
21 simprl 790 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
22 simprr 792 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
23 eqid 2610 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
2414, 23grpcl 17253 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2520, 21, 22, 24syl3anc 1318 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2614, 23grpcl 17253 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))
2720, 22, 21, 26syl3anc 1318 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))
28 f1fveq 6420 . . . . . . . . . . . . 13 ((𝑥:(Base‘𝐺)–1-1→(Base‘𝐻) ∧ ((𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
2919, 25, 27, 28syl12anc 1316 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
303adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (𝐺 GrpHom 𝐻))
31 eqid 2610 . . . . . . . . . . . . . . 15 (+g𝐻) = (+g𝐻)
3214, 23, 31ghmlin 17488 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑥‘(𝑦(+g𝐺)𝑧)) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
3330, 21, 22, 32syl3anc 1318 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥‘(𝑦(+g𝐺)𝑧)) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
3414, 23, 31ghmlin 17488 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥‘(𝑧(+g𝐺)𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
3530, 22, 21, 34syl3anc 1318 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥‘(𝑧(+g𝐺)𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
3633, 35eqeq12d 2625 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
3729, 36bitr3d 269 . . . . . . . . . . 11 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
38372ralbidva 2971 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
39 f1ofo 6057 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥:(Base‘𝐺)–onto→(Base‘𝐻))
40 foima 6033 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–onto→(Base‘𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4216, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4342raleqdv 3121 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
44 f1ofn 6051 . . . . . . . . . . . . . 14 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥 Fn (Base‘𝐺))
4516, 44syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥 Fn (Base‘𝐺))
46 ssid 3587 . . . . . . . . . . . . 13 (Base‘𝐺) ⊆ (Base‘𝐺)
47 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥𝑧) → ((𝑥𝑦)(+g𝐻)𝑣) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
48 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥𝑧) → (𝑣(+g𝐻)(𝑥𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
4947, 48eqeq12d 2625 . . . . . . . . . . . . . 14 (𝑣 = (𝑥𝑧) → (((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5049ralima 6402 . . . . . . . . . . . . 13 ((𝑥 Fn (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (Base‘𝐺)) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5145, 46, 50sylancl 693 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5243, 51bitr3d 269 . . . . . . . . . . 11 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5352ralbidv 2969 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5438, 53bitr4d 270 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
5542raleqdv 3121 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
56 oveq1 6556 . . . . . . . . . . . . . 14 (𝑤 = (𝑥𝑦) → (𝑤(+g𝐻)𝑣) = ((𝑥𝑦)(+g𝐻)𝑣))
57 oveq2 6557 . . . . . . . . . . . . . 14 (𝑤 = (𝑥𝑦) → (𝑣(+g𝐻)𝑤) = (𝑣(+g𝐻)(𝑥𝑦)))
5856, 57eqeq12d 2625 . . . . . . . . . . . . 13 (𝑤 = (𝑥𝑦) → ((𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
5958ralbidv 2969 . . . . . . . . . . . 12 (𝑤 = (𝑥𝑦) → (∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6059ralima 6402 . . . . . . . . . . 11 ((𝑥 Fn (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (Base‘𝐺)) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6145, 46, 60sylancl 693 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6255, 61bitr3d 269 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6354, 62bitr4d 270 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
6413, 63anbi12d 743 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → ((𝐺 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)) ↔ (𝐻 ∈ Mnd ∧ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤))))
6514, 23iscmn 18023 . . . . . . 7 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
6615, 31iscmn 18023 . . . . . . 7 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
6764, 65, 663bitr4g 302 . . . . . 6 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd))
688, 67anbi12d 743 . . . . 5 (𝑥 ∈ (𝐺 GrpIso 𝐻) → ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)))
69 isabl 18020 . . . . 5 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
70 isabl 18020 . . . . 5 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd))
7168, 69, 703bitr4g 302 . . . 4 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
7271exlimiv 1845 . . 3 (∃𝑥 𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
732, 72sylbi 206 . 2 ((𝐺 GrpIso 𝐻) ≠ ∅ → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
741, 73sylbi 206 1 (𝐺𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874   class class class wbr 4583  cima 5041   Fn wfn 5799  1-1wf1 5801  ontowfo 5802  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Mndcmnd 17117  Grpcgrp 17245   GrpHom cghm 17480   GrpIso cgim 17522  𝑔 cgic 17523  CMndccmn 18016  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-1o 7447  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-ghm 17481  df-gim 17524  df-gic 17525  df-cmn 18018  df-abl 18019
This theorem is referenced by:  isnumbasgrplem1  36690
  Copyright terms: Public domain W3C validator