MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmgrp Structured version   Visualization version   GIF version

Theorem ghmgrp 17362
Description: The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.)
Hypotheses
Ref Expression
ghmgrp.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmgrp.x 𝑋 = (Base‘𝐺)
ghmgrp.y 𝑌 = (Base‘𝐻)
ghmgrp.p + = (+g𝐺)
ghmgrp.q = (+g𝐻)
ghmgrp.1 (𝜑𝐹:𝑋onto𝑌)
ghmgrp.3 (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
ghmgrp (𝜑𝐻 ∈ Grp)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, + ,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥, ,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmgrp
Dummy variables 𝑎 𝑓 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmgrp.x . . 3 𝑋 = (Base‘𝐺)
3 ghmgrp.y . . 3 𝑌 = (Base‘𝐻)
4 ghmgrp.p . . 3 + = (+g𝐺)
5 ghmgrp.q . . 3 = (+g𝐻)
6 ghmgrp.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmgrp.3 . . . 4 (𝜑𝐺 ∈ Grp)
8 grpmnd 17252 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
97, 8syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
101, 2, 3, 4, 5, 6, 9mhmmnd 17360 . 2 (𝜑𝐻 ∈ Mnd)
11 fof 6028 . . . . . . . 8 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
126, 11syl 17 . . . . . . 7 (𝜑𝐹:𝑋𝑌)
1312ad3antrrr 762 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐹:𝑋𝑌)
147ad3antrrr 762 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝐺 ∈ Grp)
15 simplr 788 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → 𝑖𝑋)
16 eqid 2610 . . . . . . . 8 (invg𝐺) = (invg𝐺)
172, 16grpinvcl 17290 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → ((invg𝐺)‘𝑖) ∈ 𝑋)
1814, 15, 17syl2anc 691 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((invg𝐺)‘𝑖) ∈ 𝑋)
1913, 18ffvelrnd 6268 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘((invg𝐺)‘𝑖)) ∈ 𝑌)
2013adant1r 1311 . . . . . . . . 9 (((𝜑𝑖𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
217, 17sylan 487 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((invg𝐺)‘𝑖) ∈ 𝑋)
22 simpr 476 . . . . . . . . 9 ((𝜑𝑖𝑋) → 𝑖𝑋)
2320, 21, 22mhmlem 17358 . . . . . . . 8 ((𝜑𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
2423adantlr 747 . . . . . . 7 (((𝜑𝑎𝑌) ∧ 𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
2524adantr 480 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)))
26 eqid 2610 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
272, 4, 26, 16grplinv 17291 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → (((invg𝐺)‘𝑖) + 𝑖) = (0g𝐺))
2827fveq2d 6107 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑖𝑋) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g𝐺)))
2914, 15, 28syl2anc 691 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (𝐹‘(0g𝐺)))
301, 2, 3, 4, 5, 6, 9, 26mhmid 17359 . . . . . . . 8 (𝜑 → (𝐹‘(0g𝐺)) = (0g𝐻))
3130ad3antrrr 762 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(0g𝐺)) = (0g𝐻))
3229, 31eqtrd 2644 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹‘(((invg𝐺)‘𝑖) + 𝑖)) = (0g𝐻))
33 simpr 476 . . . . . . 7 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → (𝐹𝑖) = 𝑎)
3433oveq2d 6565 . . . . . 6 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹‘((invg𝐺)‘𝑖)) (𝐹𝑖)) = ((𝐹‘((invg𝐺)‘𝑖)) 𝑎))
3525, 32, 343eqtr3rd 2653 . . . . 5 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻))
36 oveq1 6556 . . . . . . 7 (𝑓 = (𝐹‘((invg𝐺)‘𝑖)) → (𝑓 𝑎) = ((𝐹‘((invg𝐺)‘𝑖)) 𝑎))
3736eqeq1d 2612 . . . . . 6 (𝑓 = (𝐹‘((invg𝐺)‘𝑖)) → ((𝑓 𝑎) = (0g𝐻) ↔ ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻)))
3837rspcev 3282 . . . . 5 (((𝐹‘((invg𝐺)‘𝑖)) ∈ 𝑌 ∧ ((𝐹‘((invg𝐺)‘𝑖)) 𝑎) = (0g𝐻)) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
3919, 35, 38syl2anc 691 . . . 4 ((((𝜑𝑎𝑌) ∧ 𝑖𝑋) ∧ (𝐹𝑖) = 𝑎) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
40 foelrni 6154 . . . . 5 ((𝐹:𝑋onto𝑌𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
416, 40sylan 487 . . . 4 ((𝜑𝑎𝑌) → ∃𝑖𝑋 (𝐹𝑖) = 𝑎)
4239, 41r19.29a 3060 . . 3 ((𝜑𝑎𝑌) → ∃𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
4342ralrimiva 2949 . 2 (𝜑 → ∀𝑎𝑌𝑓𝑌 (𝑓 𝑎) = (0g𝐻))
44 eqid 2610 . . 3 (0g𝐻) = (0g𝐻)
453, 5, 44isgrp 17251 . 2 (𝐻 ∈ Grp ↔ (𝐻 ∈ Mnd ∧ ∀𝑎𝑌𝑓𝑌 (𝑓 𝑎) = (0g𝐻)))
4610, 43, 45sylanbrc 695 1 (𝜑𝐻 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wf 5800  ontowfo 5802  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Mndcmnd 17117  Grpcgrp 17245  invgcminusg 17246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  ghmfghm  18059  ghmabl  18061
  Copyright terms: Public domain W3C validator