MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcmn Structured version   Visualization version   GIF version

Theorem ghmcmn 18060
Description: The image of a commutative monoid 𝐺 under a group homomorphism 𝐹 is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmcmn.3 (𝜑𝐺 ∈ CMnd)
Assertion
Ref Expression
ghmcmn (𝜑𝐻 ∈ CMnd)
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmcmn
Dummy variables 𝑎 𝑏 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmabl.x . . 3 𝑋 = (Base‘𝐺)
3 ghmabl.y . . 3 𝑌 = (Base‘𝐻)
4 ghmabl.p . . 3 + = (+g𝐺)
5 ghmabl.q . . 3 = (+g𝐻)
6 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmcmn.3 . . . 4 (𝜑𝐺 ∈ CMnd)
8 cmnmnd 18031 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
97, 8syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
101, 2, 3, 4, 5, 6, 9mhmmnd 17360 . 2 (𝜑𝐻 ∈ Mnd)
11 simp-6l 806 . . . . . . . . . . 11 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝜑)
1211, 7syl 17 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝐺 ∈ CMnd)
13 simp-4r 803 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝑎𝑋)
14 simplr 788 . . . . . . . . . 10 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → 𝑏𝑋)
152, 4cmncom 18032 . . . . . . . . . 10 ((𝐺 ∈ CMnd ∧ 𝑎𝑋𝑏𝑋) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
1612, 13, 14, 15syl3anc 1318 . . . . . . . . 9 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝑎 + 𝑏) = (𝑏 + 𝑎))
1716fveq2d 6107 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑏 + 𝑎)))
1811, 1syl3an1 1351 . . . . . . . . 9 ((((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) ∧ 𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918, 13, 14mhmlem 17358 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
2018, 14, 13mhmlem 17358 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹‘(𝑏 + 𝑎)) = ((𝐹𝑏) (𝐹𝑎)))
2117, 19, 203eqtr3d 2652 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑏) (𝐹𝑎)))
22 simpllr 795 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹𝑎) = 𝑖)
23 simpr 476 . . . . . . . 8 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝐹𝑏) = 𝑗)
2422, 23oveq12d 6567 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑎) (𝐹𝑏)) = (𝑖 𝑗))
2523, 22oveq12d 6567 . . . . . . 7 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → ((𝐹𝑏) (𝐹𝑎)) = (𝑗 𝑖))
2621, 24, 253eqtr3d 2652 . . . . . 6 (((((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) ∧ 𝑏𝑋) ∧ (𝐹𝑏) = 𝑗) → (𝑖 𝑗) = (𝑗 𝑖))
27 foelrni 6154 . . . . . . . . 9 ((𝐹:𝑋onto𝑌𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
286, 27sylan 487 . . . . . . . 8 ((𝜑𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
2928adantlr 747 . . . . . . 7 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
3029ad2antrr 758 . . . . . 6 (((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) → ∃𝑏𝑋 (𝐹𝑏) = 𝑗)
3126, 30r19.29a 3060 . . . . 5 (((((𝜑𝑖𝑌) ∧ 𝑗𝑌) ∧ 𝑎𝑋) ∧ (𝐹𝑎) = 𝑖) → (𝑖 𝑗) = (𝑗 𝑖))
32 foelrni 6154 . . . . . . 7 ((𝐹:𝑋onto𝑌𝑖𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
336, 32sylan 487 . . . . . 6 ((𝜑𝑖𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
3433adantr 480 . . . . 5 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → ∃𝑎𝑋 (𝐹𝑎) = 𝑖)
3531, 34r19.29a 3060 . . . 4 (((𝜑𝑖𝑌) ∧ 𝑗𝑌) → (𝑖 𝑗) = (𝑗 𝑖))
3635anasss 677 . . 3 ((𝜑 ∧ (𝑖𝑌𝑗𝑌)) → (𝑖 𝑗) = (𝑗 𝑖))
3736ralrimivva 2954 . 2 (𝜑 → ∀𝑖𝑌𝑗𝑌 (𝑖 𝑗) = (𝑗 𝑖))
383, 5iscmn 18023 . 2 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑖𝑌𝑗𝑌 (𝑖 𝑗) = (𝑗 𝑖)))
3910, 37, 38sylanbrc 695 1 (𝜑𝐻 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ontowfo 5802  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Mndcmnd 17117  CMndccmn 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cmn 18018
This theorem is referenced by:  ghmabl  18061
  Copyright terms: Public domain W3C validator