MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem2 Structured version   Visualization version   GIF version

Theorem gexlem2 17820
Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexlem2 ((𝐺𝑉𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6556 . . . . . 6 (𝑦 = 𝑁 → (𝑦 · 𝑥) = (𝑁 · 𝑥))
21eqeq1d 2612 . . . . 5 (𝑦 = 𝑁 → ((𝑦 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
32ralbidv 2969 . . . 4 (𝑦 = 𝑁 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
43elrab 3331 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
6 gexid.3 . . . . . 6 · = (.g𝐺)
7 gexid.4 . . . . . 6 0 = (0g𝐺)
8 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
9 eqid 2610 . . . . . 6 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
105, 6, 7, 8, 9gexval 17816 . . . . 5 (𝐺𝑉𝐸 = if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )))
11 ne0i 3880 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅)
12 ifnefalse 4048 . . . . . 6 ({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅ → if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
1311, 12syl 17 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
1410, 13sylan9eq 2664 . . . 4 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
15 ssrab2 3650 . . . . . 6 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ
16 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
1715, 16sseqtri 3600 . . . . . . 7 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
1811adantl 481 . . . . . . 7 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅)
19 infssuzcl 11648 . . . . . . 7 (({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
2017, 18, 19sylancr 694 . . . . . 6 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
2115, 20sseldi 3566 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
22 infssuzle 11647 . . . . . . 7 (({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
2317, 22mpan 702 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
2423adantl 481 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
25 elrabi 3328 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℕ)
2625nnzd 11357 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℤ)
27 fznn 12278 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
2826, 27syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
2928adantl 481 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
3021, 24, 29mpbir2and 959 . . . 4 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁))
3114, 30eqeltrd 2688 . . 3 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 ∈ (1...𝑁))
324, 31sylan2br 492 . 2 ((𝐺𝑉 ∧ (𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ (1...𝑁))
33323impb 1252 1 ((𝐺𝑉𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  wss 3540  c0 3874  ifcif 4036   class class class wbr 4583  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cle 9954  cn 10897  cz 11254  cuz 11563  ...cfz 12197  Basecbs 15695  0gc0g 15923  .gcmg 17363  gExcgex 17768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-gex 17772
This theorem is referenced by:  gexdvds  17822  gexcl3  17825  gex1  17829
  Copyright terms: Public domain W3C validator