Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum2 Structured version   Visualization version   GIF version

Theorem geo2sum2 14444
 Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
geo2sum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem geo2sum2
StepHypRef Expression
1 nn0z 11277 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 fzoval 12340 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
31, 2syl 17 . . 3 (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1)))
43sumeq1d 14279 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘))
5 2cn 10968 . . . 4 2 ∈ ℂ
65a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
7 1ne2 11117 . . . . 5 1 ≠ 2
87necomi 2836 . . . 4 2 ≠ 1
98a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ≠ 1)
10 id 22 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
116, 9, 10geoser 14438 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2)))
126, 10expcld 12870 . . . . 5 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
13 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
1413a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
1512, 14subcld 10271 . . . 4 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ)
16 ax-1ne0 9884 . . . . 5 1 ≠ 0
1716a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 1 ≠ 0)
1815, 14, 17div2negd 10695 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1))
1912, 14negsubdi2d 10287 . . . 4 (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁)))
20 2m1e1 11012 . . . . . . 7 (2 − 1) = 1
2120negeqi 10153 . . . . . 6 -(2 − 1) = -1
225, 13negsubdi2i 10246 . . . . . 6 -(2 − 1) = (1 − 2)
2321, 22eqtr3i 2634 . . . . 5 -1 = (1 − 2)
2423a1i 11 . . . 4 (𝑁 ∈ ℕ0 → -1 = (1 − 2))
2519, 24oveq12d 6567 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2)))
2615div1d 10672 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1))
2718, 25, 263eqtr3d 2652 . 2 (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1))
284, 11, 273eqtrd 2648 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   − cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ...cfz 12197  ..^cfzo 12334  ↑cexp 12722  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator