MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpprecl Structured version   Visualization version   GIF version

Theorem genpprecl 9702
Description: Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpprecl ((𝐴P𝐵P) → ((𝐶𝐴𝐷𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpprecl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . 3 (𝐶𝐺𝐷) = (𝐶𝐺𝐷)
2 rspceov 6590 . . 3 ((𝐶𝐴𝐷𝐵 ∧ (𝐶𝐺𝐷) = (𝐶𝐺𝐷)) → ∃𝑔𝐴𝐵 (𝐶𝐺𝐷) = (𝑔𝐺))
31, 2mp3an3 1405 . 2 ((𝐶𝐴𝐷𝐵) → ∃𝑔𝐴𝐵 (𝐶𝐺𝐷) = (𝑔𝐺))
4 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
5 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
64, 5genpelv 9701 . 2 ((𝐴P𝐵P) → ((𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 (𝐶𝐺𝐷) = (𝑔𝐺)))
73, 6syl5ibr 235 1 ((𝐴P𝐵P) → ((𝐶𝐴𝐷𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  (class class class)co 6549  cmpt2 6551  Qcnq 9553  Pcnp 9560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-ni 9573  df-nq 9613  df-np 9682
This theorem is referenced by:  genpn0  9704  genpnmax  9708  addclprlem2  9718  mulclprlem  9720  distrlem1pr  9726  distrlem4pr  9727  ltaddpr  9735  ltexprlem7  9743
  Copyright terms: Public domain W3C validator