MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem3 Structured version   Visualization version   GIF version

Theorem gcdcllem3 15061
Description: Lemma for gcdn0cl 15062, gcddvds 15063 and dvdslegcd 15064. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
gcdcllem2.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
gcdcllem2.2 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
Assertion
Ref Expression
gcdcllem3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Distinct variable groups:   𝑧,𝐾   𝑧,𝑛,𝑀   𝑛,𝑁,𝑧
Allowed substitution hints:   𝑅(𝑧,𝑛)   𝑆(𝑧,𝑛)   𝐾(𝑛)

Proof of Theorem gcdcllem3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcdcllem2.2 . . . . 5 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)}
2 ssrab2 3650 . . . . 5 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} ⊆ ℤ
31, 2eqsstri 3598 . . . 4 𝑅 ⊆ ℤ
4 prssi 4293 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → {𝑀, 𝑁} ⊆ ℤ)
54adantr 480 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → {𝑀, 𝑁} ⊆ ℤ)
6 neorian 2876 . . . . . . . 8 ((𝑀 ≠ 0 ∨ 𝑁 ≠ 0) ↔ ¬ (𝑀 = 0 ∧ 𝑁 = 0))
7 prid1g 4239 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁})
8 neeq1 2844 . . . . . . . . . . . 12 (𝑛 = 𝑀 → (𝑛 ≠ 0 ↔ 𝑀 ≠ 0))
98rspcev 3282 . . . . . . . . . . 11 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
107, 9sylan 487 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1110adantlr 747 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
12 prid2g 4240 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁})
13 neeq1 2844 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑛 ≠ 0 ↔ 𝑁 ≠ 0))
1413rspcev 3282 . . . . . . . . . . 11 ((𝑁 ∈ {𝑀, 𝑁} ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1512, 14sylan 487 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1615adantll 746 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
1711, 16jaodan 822 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≠ 0 ∨ 𝑁 ≠ 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
186, 17sylan2br 492 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0)
19 gcdcllem2.1 . . . . . . . 8 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧𝑛}
2019gcdcllem1 15059 . . . . . . 7 (({𝑀, 𝑁} ⊆ ℤ ∧ ∃𝑛 ∈ {𝑀, 𝑁}𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
215, 18, 20syl2anc 691 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2219, 1gcdcllem2 15060 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆)
23 neeq1 2844 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑅 ≠ ∅ ↔ 𝑆 ≠ ∅))
24 raleq 3115 . . . . . . . . . 10 (𝑅 = 𝑆 → (∀𝑦𝑅 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦𝑥))
2524rexbidv 3034 . . . . . . . . 9 (𝑅 = 𝑆 → (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ↔ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
2623, 25anbi12d 743 . . . . . . . 8 (𝑅 = 𝑆 → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2722, 26syl 17 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2827adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) ↔ (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
2921, 28mpbird 246 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥))
30 suprzcl2 11654 . . . . . 6 ((𝑅 ⊆ ℤ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
313, 30mp3an1 1403 . . . . 5 ((𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → sup(𝑅, ℝ, < ) ∈ 𝑅)
3229, 31syl 17 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ 𝑅)
333, 32sseldi 3566 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℤ)
343a1i 11 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 𝑅 ⊆ ℤ)
3529simprd 478 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥)
36 1dvds 14834 . . . . . . 7 (𝑀 ∈ ℤ → 1 ∥ 𝑀)
37 1dvds 14834 . . . . . . 7 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3836, 37anim12i 588 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
39 1z 11284 . . . . . . 7 1 ∈ ℤ
40 breq1 4586 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑀 ↔ 1 ∥ 𝑀))
41 breq1 4586 . . . . . . . . 9 (𝑧 = 1 → (𝑧𝑁 ↔ 1 ∥ 𝑁))
4240, 41anbi12d 743 . . . . . . . 8 (𝑧 = 1 → ((𝑧𝑀𝑧𝑁) ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4342, 1elrab2 3333 . . . . . . 7 (1 ∈ 𝑅 ↔ (1 ∈ ℤ ∧ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁)))
4439, 43mpbiran 955 . . . . . 6 (1 ∈ 𝑅 ↔ (1 ∥ 𝑀 ∧ 1 ∥ 𝑁))
4538, 44sylibr 223 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ 𝑅)
4645adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ∈ 𝑅)
47 suprzub 11655 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 ∧ 1 ∈ 𝑅) → 1 ≤ sup(𝑅, ℝ, < ))
4834, 35, 46, 47syl3anc 1318 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → 1 ≤ sup(𝑅, ℝ, < ))
49 elnnz1 11280 . . 3 (sup(𝑅, ℝ, < ) ∈ ℕ ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ 1 ≤ sup(𝑅, ℝ, < )))
5033, 48, 49sylanbrc 695 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → sup(𝑅, ℝ, < ) ∈ ℕ)
51 breq1 4586 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑀 ↔ sup(𝑅, ℝ, < ) ∥ 𝑀))
52 breq1 4586 . . . . . 6 (𝑥 = sup(𝑅, ℝ, < ) → (𝑥𝑁 ↔ sup(𝑅, ℝ, < ) ∥ 𝑁))
5351, 52anbi12d 743 . . . . 5 (𝑥 = sup(𝑅, ℝ, < ) → ((𝑥𝑀𝑥𝑁) ↔ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
54 breq1 4586 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑀𝑥𝑀))
55 breq1 4586 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑁𝑥𝑁))
5654, 55anbi12d 743 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑀𝑧𝑁) ↔ (𝑥𝑀𝑥𝑁)))
5756cbvrabv 3172 . . . . . 6 {𝑧 ∈ ℤ ∣ (𝑧𝑀𝑧𝑁)} = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
581, 57eqtri 2632 . . . . 5 𝑅 = {𝑥 ∈ ℤ ∣ (𝑥𝑀𝑥𝑁)}
5953, 58elrab2 3333 . . . 4 (sup(𝑅, ℝ, < ) ∈ 𝑅 ↔ (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
6032, 59sylib 207 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℤ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁)))
6160simprd 478 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁))
62 breq1 4586 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑀𝐾𝑀))
63 breq1 4586 . . . . . . 7 (𝑧 = 𝐾 → (𝑧𝑁𝐾𝑁))
6462, 63anbi12d 743 . . . . . 6 (𝑧 = 𝐾 → ((𝑧𝑀𝑧𝑁) ↔ (𝐾𝑀𝐾𝑁)))
6564, 1elrab2 3333 . . . . 5 (𝐾𝑅 ↔ (𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)))
6665biimpri 217 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐾𝑀𝐾𝑁)) → 𝐾𝑅)
67663impb 1252 . . 3 ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾𝑅)
68 suprzub 11655 . . . . 5 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥𝐾𝑅) → 𝐾 ≤ sup(𝑅, ℝ, < ))
69683expia 1259 . . . 4 ((𝑅 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥) → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
703, 69mpan 702 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝑅 𝑦𝑥 → (𝐾𝑅𝐾 ≤ sup(𝑅, ℝ, < )))
7135, 67, 70syl2im 39 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))
7250, 61, 713jca 1235 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾𝑀𝐾𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874  {cpr 4127   class class class wbr 4583  supcsup 8229  cr 9814  0cc0 9815  1c1 9816   < clt 9953  cle 9954  cn 10897  cz 11254  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822
This theorem is referenced by:  gcdn0cl  15062  gcddvds  15063  dvdslegcd  15064
  Copyright terms: Public domain W3C validator