MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdcllem1 Structured version   Visualization version   GIF version

Theorem gcdcllem1 15059
Description: Lemma for gcdn0cl 15062, gcddvds 15063 and dvdslegcd 15064. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypothesis
Ref Expression
gcdcllem1.1 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
Assertion
Ref Expression
gcdcllem1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝐴,𝑛,𝑥,𝑦,𝑧   𝑥,𝑆
Allowed substitution hints:   𝑆(𝑦,𝑧,𝑛)

Proof of Theorem gcdcllem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1z 11284 . . . . 5 1 ∈ ℤ
2 ssel 3562 . . . . . . 7 (𝐴 ⊆ ℤ → (𝑛𝐴𝑛 ∈ ℤ))
3 1dvds 14834 . . . . . . 7 (𝑛 ∈ ℤ → 1 ∥ 𝑛)
42, 3syl6 34 . . . . . 6 (𝐴 ⊆ ℤ → (𝑛𝐴 → 1 ∥ 𝑛))
54ralrimiv 2948 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑛𝐴 1 ∥ 𝑛)
6 breq1 4586 . . . . . . . 8 (𝑧 = 1 → (𝑧𝑛 ↔ 1 ∥ 𝑛))
76ralbidv 2969 . . . . . . 7 (𝑧 = 1 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 1 ∥ 𝑛))
8 gcdcllem1.1 . . . . . . 7 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛𝐴 𝑧𝑛}
97, 8elrab2 3333 . . . . . 6 (1 ∈ 𝑆 ↔ (1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛))
109biimpri 217 . . . . 5 ((1 ∈ ℤ ∧ ∀𝑛𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆)
111, 5, 10sylancr 694 . . . 4 (𝐴 ⊆ ℤ → 1 ∈ 𝑆)
12 ne0i 3880 . . . 4 (1 ∈ 𝑆𝑆 ≠ ∅)
1311, 12syl 17 . . 3 (𝐴 ⊆ ℤ → 𝑆 ≠ ∅)
1413adantr 480 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅)
15 neeq1 2844 . . . 4 (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0))
1615cbvrexv 3148 . . 3 (∃𝑛𝐴 𝑛 ≠ 0 ↔ ∃𝑤𝐴 𝑤 ≠ 0)
17 breq1 4586 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝑧𝑛𝑦𝑛))
1817ralbidv 2969 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (∀𝑛𝐴 𝑧𝑛 ↔ ∀𝑛𝐴 𝑦𝑛))
1918, 8elrab2 3333 . . . . . . . . . . 11 (𝑦𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛𝐴 𝑦𝑛))
2019simprbi 479 . . . . . . . . . 10 (𝑦𝑆 → ∀𝑛𝐴 𝑦𝑛)
2120adantl 481 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 𝑦𝑛)
2219simplbi 475 . . . . . . . . . 10 (𝑦𝑆𝑦 ∈ ℤ)
23 ssel2 3563 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
24 dvdsleabs 14871 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦𝑛𝑦 ≤ (abs‘𝑛)))
25243expia 1259 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2623, 25sylan2 490 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛𝐴)) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2726anassrs 678 . . . . . . . . . . . . 13 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑛 ≠ 0 → (𝑦𝑛𝑦 ≤ (abs‘𝑛))))
2827com23 84 . . . . . . . . . . . 12 (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛𝐴) → (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
2928ralrimiva 2949 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
3029ancoms 468 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
3122, 30sylan2 490 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))
32 r19.26 3046 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))))
33 pm3.35 609 . . . . . . . . . . 11 ((𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3433ralimi 2936 . . . . . . . . . 10 (∀𝑛𝐴 (𝑦𝑛 ∧ (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3532, 34sylbir 224 . . . . . . . . 9 ((∀𝑛𝐴 𝑦𝑛 ∧ ∀𝑛𝐴 (𝑦𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3621, 31, 35syl2anc 691 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑦𝑆) → ∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
3736ralrimiva 2949 . . . . . . 7 (𝐴 ⊆ ℤ → ∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))
38 fveq2 6103 . . . . . . . . . . . 12 (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤))
3938breq2d 4595 . . . . . . . . . . 11 (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤)))
4015, 39imbi12d 333 . . . . . . . . . 10 (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))))
4140cbvralv 3147 . . . . . . . . 9 (∀𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
4241ralbii 2963 . . . . . . . 8 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
43 ralcom 3079 . . . . . . . 8 (∀𝑦𝑆𝑤𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))
44 r19.21v 2943 . . . . . . . . 9 (∀𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4544ralbii 2963 . . . . . . . 8 (∀𝑤𝐴𝑦𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4642, 43, 453bitri 285 . . . . . . 7 (∀𝑦𝑆𝑛𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
4737, 46sylib 207 . . . . . 6 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
48 ssel2 3563 . . . . . . . . . . 11 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → 𝑤 ∈ ℤ)
49 nn0abscl 13900 . . . . . . . . . . 11 (𝑤 ∈ ℤ → (abs‘𝑤) ∈ ℕ0)
5048, 49syl 17 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℕ0)
5150nn0zd 11356 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (abs‘𝑤) ∈ ℤ)
52 breq2 4587 . . . . . . . . . . 11 (𝑥 = (abs‘𝑤) → (𝑦𝑥𝑦 ≤ (abs‘𝑤)))
5352ralbidv 2969 . . . . . . . . . 10 (𝑥 = (abs‘𝑤) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5453adantl 481 . . . . . . . . 9 (((𝐴 ⊆ ℤ ∧ 𝑤𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)))
5551, 54rspcedv 3286 . . . . . . . 8 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → (∀𝑦𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
5655imim2d 55 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝑤𝐴) → ((𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5756ralimdva 2945 . . . . . 6 (𝐴 ⊆ ℤ → (∀𝑤𝐴 (𝑤 ≠ 0 → ∀𝑦𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)))
5847, 57mpd 15 . . . . 5 (𝐴 ⊆ ℤ → ∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
59 r19.23v 3005 . . . . 5 (∀𝑤𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥) ↔ (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
6058, 59sylib 207 . . . 4 (𝐴 ⊆ ℤ → (∃𝑤𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
6160imp 444 . . 3 ((𝐴 ⊆ ℤ ∧ ∃𝑤𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6216, 61sylan2b 491 . 2 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥)
6314, 62jca 553 1 ((𝐴 ⊆ ℤ ∧ ∃𝑛𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874   class class class wbr 4583  cfv 5804  0cc0 9815  1c1 9816  cle 9954  0cn0 11169  cz 11254  abscabs 13822  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822
This theorem is referenced by:  gcdcllem3  15061
  Copyright terms: Public domain W3C validator