Step | Hyp | Ref
| Expression |
1 | | 1z 11284 |
. . . . 5
⊢ 1 ∈
ℤ |
2 | | ssel 3562 |
. . . . . . 7
⊢ (𝐴 ⊆ ℤ → (𝑛 ∈ 𝐴 → 𝑛 ∈ ℤ)) |
3 | | 1dvds 14834 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ → 1 ∥
𝑛) |
4 | 2, 3 | syl6 34 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ → (𝑛 ∈ 𝐴 → 1 ∥ 𝑛)) |
5 | 4 | ralrimiv 2948 |
. . . . 5
⊢ (𝐴 ⊆ ℤ →
∀𝑛 ∈ 𝐴 1 ∥ 𝑛) |
6 | | breq1 4586 |
. . . . . . . 8
⊢ (𝑧 = 1 → (𝑧 ∥ 𝑛 ↔ 1 ∥ 𝑛)) |
7 | 6 | ralbidv 2969 |
. . . . . . 7
⊢ (𝑧 = 1 → (∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ 𝐴 1 ∥ 𝑛)) |
8 | | gcdcllem1.1 |
. . . . . . 7
⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛} |
9 | 7, 8 | elrab2 3333 |
. . . . . 6
⊢ (1 ∈
𝑆 ↔ (1 ∈ ℤ
∧ ∀𝑛 ∈
𝐴 1 ∥ 𝑛)) |
10 | 9 | biimpri 217 |
. . . . 5
⊢ ((1
∈ ℤ ∧ ∀𝑛 ∈ 𝐴 1 ∥ 𝑛) → 1 ∈ 𝑆) |
11 | 1, 5, 10 | sylancr 694 |
. . . 4
⊢ (𝐴 ⊆ ℤ → 1 ∈
𝑆) |
12 | | ne0i 3880 |
. . . 4
⊢ (1 ∈
𝑆 → 𝑆 ≠ ∅) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝐴 ⊆ ℤ → 𝑆 ≠ ∅) |
14 | 13 | adantr 480 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → 𝑆 ≠ ∅) |
15 | | neeq1 2844 |
. . . 4
⊢ (𝑛 = 𝑤 → (𝑛 ≠ 0 ↔ 𝑤 ≠ 0)) |
16 | 15 | cbvrexv 3148 |
. . 3
⊢
(∃𝑛 ∈
𝐴 𝑛 ≠ 0 ↔ ∃𝑤 ∈ 𝐴 𝑤 ≠ 0) |
17 | | breq1 4586 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑛 ↔ 𝑦 ∥ 𝑛)) |
18 | 17 | ralbidv 2969 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑦 → (∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛 ↔ ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛)) |
19 | 18, 8 | elrab2 3333 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑆 ↔ (𝑦 ∈ ℤ ∧ ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛)) |
20 | 19 | simprbi 479 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑆 → ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛) |
21 | 20 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆) → ∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛) |
22 | 19 | simplbi 475 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑆 → 𝑦 ∈ ℤ) |
23 | | ssel2 3563 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ ℤ) |
24 | | dvdsleabs 14871 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑛 ≠ 0) → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛))) |
25 | 24 | 3expia 1259 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ≠ 0 → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛)))) |
26 | 23, 25 | sylan2 490 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℤ ∧ (𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴)) → (𝑛 ≠ 0 → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛)))) |
27 | 26 | anassrs 678 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛 ∈ 𝐴) → (𝑛 ≠ 0 → (𝑦 ∥ 𝑛 → 𝑦 ≤ (abs‘𝑛)))) |
28 | 27 | com23 84 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) ∧ 𝑛 ∈ 𝐴) → (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
29 | 28 | ralrimiva 2949 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℤ ∧ 𝐴 ⊆ ℤ) →
∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
30 | 29 | ancoms 468 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ ℤ) →
∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
31 | 22, 30 | sylan2 490 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆) → ∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) |
32 | | r19.26 3046 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
𝐴 (𝑦 ∥ 𝑛 ∧ (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) ↔ (∀𝑛 ∈ 𝐴 𝑦 ∥ 𝑛 ∧ ∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))))) |
33 | | pm3.35 609 |
. . . . . . . . . . 11
⊢ ((𝑦 ∥ 𝑛 ∧ (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
34 | 33 | ralimi 2936 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
𝐴 (𝑦 ∥ 𝑛 ∧ (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
35 | 32, 34 | sylbir 224 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
𝐴 𝑦 ∥ 𝑛 ∧ ∀𝑛 ∈ 𝐴 (𝑦 ∥ 𝑛 → (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)))) → ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
36 | 21, 31, 35 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℤ ∧ 𝑦 ∈ 𝑆) → ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
37 | 36 | ralrimiva 2949 |
. . . . . . 7
⊢ (𝐴 ⊆ ℤ →
∀𝑦 ∈ 𝑆 ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛))) |
38 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑤 → (abs‘𝑛) = (abs‘𝑤)) |
39 | 38 | breq2d 4595 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑤 → (𝑦 ≤ (abs‘𝑛) ↔ 𝑦 ≤ (abs‘𝑤))) |
40 | 15, 39 | imbi12d 333 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑤 → ((𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)))) |
41 | 40 | cbvralv 3147 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))) |
42 | 41 | ralbii 2963 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑆 ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑦 ∈ 𝑆 ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))) |
43 | | ralcom 3079 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑆 ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤))) |
44 | | r19.21v 2943 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
45 | 44 | ralbii 2963 |
. . . . . . . 8
⊢
(∀𝑤 ∈
𝐴 ∀𝑦 ∈ 𝑆 (𝑤 ≠ 0 → 𝑦 ≤ (abs‘𝑤)) ↔ ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
46 | 42, 43, 45 | 3bitri 285 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑆 ∀𝑛 ∈ 𝐴 (𝑛 ≠ 0 → 𝑦 ≤ (abs‘𝑛)) ↔ ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
47 | 37, 46 | sylib 207 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ →
∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
48 | | ssel2 3563 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℤ) |
49 | | nn0abscl 13900 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ ℤ →
(abs‘𝑤) ∈
ℕ0) |
50 | 48, 49 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → (abs‘𝑤) ∈
ℕ0) |
51 | 50 | nn0zd 11356 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → (abs‘𝑤) ∈ ℤ) |
52 | | breq2 4587 |
. . . . . . . . . . 11
⊢ (𝑥 = (abs‘𝑤) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (abs‘𝑤))) |
53 | 52 | ralbidv 2969 |
. . . . . . . . . 10
⊢ (𝑥 = (abs‘𝑤) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
54 | 53 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) ∧ 𝑥 = (abs‘𝑤)) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤))) |
55 | 51, 54 | rspcedv 3286 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → (∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
56 | 55 | imim2d 55 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℤ ∧ 𝑤 ∈ 𝐴) → ((𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤)) → (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥))) |
57 | 56 | ralimdva 2945 |
. . . . . 6
⊢ (𝐴 ⊆ ℤ →
(∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∀𝑦 ∈ 𝑆 𝑦 ≤ (abs‘𝑤)) → ∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥))) |
58 | 47, 57 | mpd 15 |
. . . . 5
⊢ (𝐴 ⊆ ℤ →
∀𝑤 ∈ 𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
59 | | r19.23v 3005 |
. . . . 5
⊢
(∀𝑤 ∈
𝐴 (𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) ↔ (∃𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
60 | 58, 59 | sylib 207 |
. . . 4
⊢ (𝐴 ⊆ ℤ →
(∃𝑤 ∈ 𝐴 𝑤 ≠ 0 → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |
61 | 60 | imp 444 |
. . 3
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑤 ∈ 𝐴 𝑤 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
62 | 16, 61 | sylan2b 491 |
. 2
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥) |
63 | 14, 62 | jca 553 |
1
⊢ ((𝐴 ⊆ ℤ ∧
∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) |