Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gbpart9 | Structured version Visualization version GIF version |
Description: The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) |
Ref | Expression |
---|---|
gbpart9 | ⊢ 9 = ((3 + 3) + 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p3e6 11038 | . . 3 ⊢ (3 + 3) = 6 | |
2 | 1 | oveq1i 6559 | . 2 ⊢ ((3 + 3) + 3) = (6 + 3) |
3 | 6p3e9 11047 | . 2 ⊢ (6 + 3) = 9 | |
4 | 2, 3 | eqtr2i 2633 | 1 ⊢ 9 = ((3 + 3) + 3) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 (class class class)co 6549 + caddc 9818 3c3 10948 6c6 10951 9c9 10954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-addass 9880 ax-i2m1 9883 ax-1ne0 9884 ax-rrecex 9887 ax-cnre 9888 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 df-ov 6552 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 |
This theorem is referenced by: 9gboa 40196 |
Copyright terms: Public domain | W3C validator |