Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbpart9 Structured version   Visualization version   GIF version

Theorem gbpart9 40191
Description: The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
gbpart9 9 = ((3 + 3) + 3)

Proof of Theorem gbpart9
StepHypRef Expression
1 3p3e6 11038 . . 3 (3 + 3) = 6
21oveq1i 6559 . 2 ((3 + 3) + 3) = (6 + 3)
3 6p3e9 11047 . 2 (6 + 3) = 9
42, 3eqtr2i 2633 1 9 = ((3 + 3) + 3)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  (class class class)co 6549   + caddc 9818  3c3 10948  6c6 10951  9c9 10954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-addass 9880  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963
This theorem is referenced by:  9gboa  40196
  Copyright terms: Public domain W3C validator