Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gbegt5 Structured version   Visualization version   GIF version

Theorem gbegt5 40183
Description: Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
gbegt5 (𝑍 ∈ GoldbachEven → 5 < 𝑍)

Proof of Theorem gbegt5
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgbe 40173 . 2 (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))))
2 oddprmuzge3 40163 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑝 ∈ Odd ) → 𝑝 ∈ (ℤ‘3))
32ancoms 468 . . . . . . . . . . . 12 ((𝑝 ∈ Odd ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ (ℤ‘3))
4 oddprmuzge3 40163 . . . . . . . . . . . . 13 ((𝑞 ∈ ℙ ∧ 𝑞 ∈ Odd ) → 𝑞 ∈ (ℤ‘3))
54ancoms 468 . . . . . . . . . . . 12 ((𝑞 ∈ Odd ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ (ℤ‘3))
6 eluz2 11569 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝))
7 eluz2 11569 . . . . . . . . . . . . . . 15 (𝑞 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞))
8 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 ∈ ℤ → 𝑞 ∈ ℝ)
9 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 ∈ ℤ → 𝑝 ∈ ℝ)
10 3re 10971 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
1110, 10pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 ∈ ℝ ∧ 3 ∈ ℝ)
12 pm3.22 464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ))
13 le2add 10389 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 ∈ ℝ ∧ 3 ∈ ℝ) ∧ (𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ)) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
1411, 12, 13sylancr 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑝 ∧ 3 ≤ 𝑞) → (3 + 3) ≤ (𝑝 + 𝑞)))
1514ancomsd 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → (3 + 3) ≤ (𝑝 + 𝑞)))
16 3p3e6 11038 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 + 3) = 6
1716breq1i 4590 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((3 + 3) ≤ (𝑝 + 𝑞) ↔ 6 ≤ (𝑝 + 𝑞))
18 5lt6 11081 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 < 6
19 5re 10976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 5 ∈ ℝ)
21 6re 10978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 ∈ ℝ
2221a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 6 ∈ ℝ)
23 readdcl 9898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑝 ∈ ℝ ∧ 𝑞 ∈ ℝ) → (𝑝 + 𝑞) ∈ ℝ)
2423ancoms 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (𝑝 + 𝑞) ∈ ℝ)
25 ltletr 10008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((5 ∈ ℝ ∧ 6 ∈ ℝ ∧ (𝑝 + 𝑞) ∈ ℝ) → ((5 < 6 ∧ 6 ≤ (𝑝 + 𝑞)) → 5 < (𝑝 + 𝑞)))
2620, 22, 24, 25syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((5 < 6 ∧ 6 ≤ (𝑝 + 𝑞)) → 5 < (𝑝 + 𝑞)))
2718, 26mpani 708 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → (6 ≤ (𝑝 + 𝑞) → 5 < (𝑝 + 𝑞)))
2817, 27syl5bi 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 + 3) ≤ (𝑝 + 𝑞) → 5 < (𝑝 + 𝑞)))
2915, 28syld 46 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑞 ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞)))
308, 9, 29syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞 ∈ ℤ ∧ 𝑝 ∈ ℤ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞)))
3130ex 449 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ ℤ → (𝑝 ∈ ℤ → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞))))
3231adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ) → (𝑝 ∈ ℤ → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → 5 < (𝑝 + 𝑞))))
3332com23 84 . . . . . . . . . . . . . . . . . . . 20 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((3 ≤ 𝑞 ∧ 3 ≤ 𝑝) → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))
3433exp4b 630 . . . . . . . . . . . . . . . . . . 19 (3 ∈ ℤ → (𝑞 ∈ ℤ → (3 ≤ 𝑞 → (3 ≤ 𝑝 → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))))
35343imp 1249 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → (3 ≤ 𝑝 → (𝑝 ∈ ℤ → 5 < (𝑝 + 𝑞))))
3635com13 86 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℤ → (3 ≤ 𝑝 → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞))))
3736imp 444 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞)))
38373adant1 1072 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → ((3 ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ 3 ≤ 𝑞) → 5 < (𝑝 + 𝑞)))
397, 38syl5bi 231 . . . . . . . . . . . . . 14 ((3 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 3 ≤ 𝑝) → (𝑞 ∈ (ℤ‘3) → 5 < (𝑝 + 𝑞)))
406, 39sylbi 206 . . . . . . . . . . . . 13 (𝑝 ∈ (ℤ‘3) → (𝑞 ∈ (ℤ‘3) → 5 < (𝑝 + 𝑞)))
4140imp 444 . . . . . . . . . . . 12 ((𝑝 ∈ (ℤ‘3) ∧ 𝑞 ∈ (ℤ‘3)) → 5 < (𝑝 + 𝑞))
423, 5, 41syl2an 493 . . . . . . . . . . 11 (((𝑝 ∈ Odd ∧ 𝑝 ∈ ℙ) ∧ (𝑞 ∈ Odd ∧ 𝑞 ∈ ℙ)) → 5 < (𝑝 + 𝑞))
4342an4s 865 . . . . . . . . . 10 (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ (𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ)) → 5 < (𝑝 + 𝑞))
4443ex 449 . . . . . . . . 9 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 5 < (𝑝 + 𝑞)))
45443adant3 1074 . . . . . . . 8 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → 5 < (𝑝 + 𝑞)))
4645impcom 445 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < (𝑝 + 𝑞))
47 breq2 4587 . . . . . . . . 9 (𝑍 = (𝑝 + 𝑞) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
48473ad2ant3 1077 . . . . . . . 8 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
4948adantl 481 . . . . . . 7 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → (5 < 𝑍 ↔ 5 < (𝑝 + 𝑞)))
5046, 49mpbird 246 . . . . . 6 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < 𝑍)
5150ex 449 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍))
5251a1i 11 . . . 4 (𝑍 ∈ Even → ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍)))
5352rexlimdvv 3019 . . 3 (𝑍 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)) → 5 < 𝑍))
5453imp 444 . 2 ((𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞))) → 5 < 𝑍)
551, 54sylbi 206 1 (𝑍 ∈ GoldbachEven → 5 < 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   + caddc 9818   < clt 9953  cle 9954  3c3 10948  5c5 10950  6c6 10951  cz 11254  cuz 11563  cprime 15223   Even ceven 40075   Odd codd 40076   GoldbachEven cgbe 40167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-even 40077  df-odd 40078  df-gbe 40170
This theorem is referenced by:  gbege6  40187
  Copyright terms: Public domain W3C validator