Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem6 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem6 24897
 Description: Lemma 6 for gausslemma2d 24899. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem6 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 gausslemma2d.p . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . . 4 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . . 4 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . . 4 𝑀 = (⌊‘(𝑃 / 4))
51, 2, 3, 4gausslemma2dlem4 24894 . . 3 (𝜑 → (!‘𝐻) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)))
65oveq1d 6564 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
7 fzfid 12634 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
81, 2, 3, 4gausslemma2dlem2 24892 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
98adantr 480 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → ∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2))
10 rspa 2914 . . . . . . . 8 ((∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) ∧ 𝑘 ∈ (1...𝑀)) → (𝑅𝑘) = (𝑘 · 2))
1110expcom 450 . . . . . . 7 (𝑘 ∈ (1...𝑀) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
1211adantl 481 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) = (𝑘 · 2)))
13 elfzelz 12213 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℤ)
14 2z 11286 . . . . . . . . . 10 2 ∈ ℤ
1514a1i 11 . . . . . . . . 9 (𝑘 ∈ (1...𝑀) → 2 ∈ ℤ)
1613, 15zmulcld 11364 . . . . . . . 8 (𝑘 ∈ (1...𝑀) → (𝑘 · 2) ∈ ℤ)
1716adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑘 · 2) ∈ ℤ)
18 eleq1 2676 . . . . . . 7 ((𝑅𝑘) = (𝑘 · 2) → ((𝑅𝑘) ∈ ℤ ↔ (𝑘 · 2) ∈ ℤ))
1917, 18syl5ibrcom 236 . . . . . 6 ((𝜑𝑘 ∈ (1...𝑀)) → ((𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
2012, 19syld 46 . . . . 5 ((𝜑𝑘 ∈ (1...𝑀)) → (∀𝑘 ∈ (1...𝑀)(𝑅𝑘) = (𝑘 · 2) → (𝑅𝑘) ∈ ℤ))
219, 20mpd 15 . . . 4 ((𝜑𝑘 ∈ (1...𝑀)) → (𝑅𝑘) ∈ ℤ)
227, 21fprodzcl 14523 . . 3 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ)
23 fzfid 12634 . . . . 5 (𝜑 → ((𝑀 + 1)...𝐻) ∈ Fin)
241, 2, 3, 4gausslemma2dlem3 24893 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2524adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)))
26 rspa 2914 . . . . . . . . 9 ((∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) ∧ 𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2)))
2726expcom 450 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
2827adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) = (𝑃 − (𝑘 · 2))))
291gausslemma2dlem0a 24881 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
3029nnzd 11357 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
31 elfzelz 12213 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 𝑘 ∈ ℤ)
3214a1i 11 . . . . . . . . . 10 (𝑘 ∈ ((𝑀 + 1)...𝐻) → 2 ∈ ℤ)
3331, 32zmulcld 11364 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 1)...𝐻) → (𝑘 · 2) ∈ ℤ)
34 zsubcl 11296 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ (𝑘 · 2) ∈ ℤ) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
3530, 33, 34syl2an 493 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑃 − (𝑘 · 2)) ∈ ℤ)
36 eleq1 2676 . . . . . . . 8 ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → ((𝑅𝑘) ∈ ℤ ↔ (𝑃 − (𝑘 · 2)) ∈ ℤ))
3735, 36syl5ibrcom 236 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → ((𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3828, 37syld 46 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (∀𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) = (𝑃 − (𝑘 · 2)) → (𝑅𝑘) ∈ ℤ))
3925, 38mpd 15 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑅𝑘) ∈ ℤ)
4023, 39fprodzcl 14523 . . . 4 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℤ)
4140zred 11358 . . 3 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ)
42 nnoddn2prm 15354 . . . 4 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃))
43 nnrp 11718 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
4443adantr 480 . . . 4 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
451, 42, 443syl 18 . . 3 (𝜑𝑃 ∈ ℝ+)
46 modmulmodr 12598 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃))
4746eqcomd 2616 . . 3 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
4822, 41, 45, 47syl3anc 1318 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃))
49 gausslemma2d.n . . . . . 6 𝑁 = (𝐻𝑀)
501, 2, 3, 4, 49gausslemma2dlem5 24896 . . . . 5 (𝜑 → (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃) = (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃))
5150oveq2d 6565 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) = (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)))
5251oveq1d 6564 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃))
53 neg1rr 11002 . . . . . . 7 -1 ∈ ℝ
5453a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℝ)
551, 4, 2, 49gausslemma2dlem0h 24888 . . . . . 6 (𝜑𝑁 ∈ ℕ0)
5654, 55reexpcld 12887 . . . . 5 (𝜑 → (-1↑𝑁) ∈ ℝ)
5731adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 𝑘 ∈ ℤ)
5814a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → 2 ∈ ℤ)
5957, 58zmulcld 11364 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝐻)) → (𝑘 · 2) ∈ ℤ)
6023, 59fprodzcl 14523 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℤ)
6160zred 11358 . . . . 5 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℝ)
6256, 61remulcld 9949 . . . 4 (𝜑 → ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ)
63 modmulmodr 12598 . . . 4 ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℤ ∧ ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
6422, 62, 45, 63syl3anc 1318 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) mod 𝑃)) mod 𝑃) = ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃))
658prodeq2d 14491 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) = ∏𝑘 ∈ (1...𝑀)(𝑘 · 2))
6665oveq1d 6564 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
67 fzfid 12634 . . . . . . . . 9 (𝜑 → (1...𝐻) ∈ Fin)
68 elfzelz 12213 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℤ)
6968zcnd 11359 . . . . . . . . . 10 (𝑘 ∈ (1...𝐻) → 𝑘 ∈ ℂ)
7069adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 𝑘 ∈ ℂ)
71 2cn 10968 . . . . . . . . . 10 2 ∈ ℂ
7271a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → 2 ∈ ℂ)
7367, 70, 72fprodmul 14529 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2))
741, 4gausslemma2dlem0d 24884 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
7574nn0red 11229 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
7675ltp1d 10833 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
77 fzdisj 12239 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
7876, 77syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝐻)) = ∅)
79 1zzd 11285 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℤ)
80 nn0pzuz 11621 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ 1 ∈ ℤ) → (𝑀 + 1) ∈ (ℤ‘1))
8174, 79, 80syl2anc 691 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
8274nn0zd 11356 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
831, 2gausslemma2dlem0b 24882 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ)
8483nnzd 11357 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℤ)
851, 4, 2gausslemma2dlem0g 24887 . . . . . . . . . . 11 (𝜑𝑀𝐻)
86 eluz2 11569 . . . . . . . . . . 11 (𝐻 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐻 ∈ ℤ ∧ 𝑀𝐻))
8782, 84, 85, 86syl3anbrc 1239 . . . . . . . . . 10 (𝜑𝐻 ∈ (ℤ𝑀))
88 fzsplit2 12237 . . . . . . . . . 10 (((𝑀 + 1) ∈ (ℤ‘1) ∧ 𝐻 ∈ (ℤ𝑀)) → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
8981, 87, 88syl2anc 691 . . . . . . . . 9 (𝜑 → (1...𝐻) = ((1...𝑀) ∪ ((𝑀 + 1)...𝐻)))
9014a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝐻) → 2 ∈ ℤ)
9168, 90zmulcld 11364 . . . . . . . . . . 11 (𝑘 ∈ (1...𝐻) → (𝑘 · 2) ∈ ℤ)
9291adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℤ)
9392zcnd 11359 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝐻)) → (𝑘 · 2) ∈ ℂ)
9478, 89, 67, 93fprodsplit 14535 . . . . . . . 8 (𝜑 → ∏𝑘 ∈ (1...𝐻)(𝑘 · 2) = (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)))
95 nnnn0 11176 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
9695anim1i 590 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
9742, 96syl 17 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃))
98 nn0oddm1d2 14939 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ0 → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
9998biimpa 500 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℕ0)
1002, 99syl5eqel 2692 . . . . . . . . . . . . 13 ((𝑃 ∈ ℕ0 ∧ ¬ 2 ∥ 𝑃) → 𝐻 ∈ ℕ0)
1011, 97, 1003syl 18 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
102 fprodfac 14542 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
103101, 102syl 17 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)𝑘)
104103eqcomd 2616 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)𝑘 = (!‘𝐻))
105 fzfi 12633 . . . . . . . . . . . 12 (1...𝐻) ∈ Fin
106105, 71pm3.2i 470 . . . . . . . . . . 11 ((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ)
107 fprodconst 14547 . . . . . . . . . . 11 (((1...𝐻) ∈ Fin ∧ 2 ∈ ℂ) → ∏𝑘 ∈ (1...𝐻)2 = (2↑(#‘(1...𝐻))))
108106, 107mp1i 13 . . . . . . . . . 10 (𝜑 → ∏𝑘 ∈ (1...𝐻)2 = (2↑(#‘(1...𝐻))))
109104, 108oveq12d 6567 . . . . . . . . 9 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((!‘𝐻) · (2↑(#‘(1...𝐻)))))
110 hashfz1 12996 . . . . . . . . . . . 12 (𝐻 ∈ ℕ0 → (#‘(1...𝐻)) = 𝐻)
111101, 110syl 17 . . . . . . . . . . 11 (𝜑 → (#‘(1...𝐻)) = 𝐻)
112111oveq2d 6565 . . . . . . . . . 10 (𝜑 → (2↑(#‘(1...𝐻))) = (2↑𝐻))
113112oveq2d 6565 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑(#‘(1...𝐻)))) = ((!‘𝐻) · (2↑𝐻)))
114101faccld 12933 . . . . . . . . . . 11 (𝜑 → (!‘𝐻) ∈ ℕ)
115114nncnd 10913 . . . . . . . . . 10 (𝜑 → (!‘𝐻) ∈ ℂ)
116 2nn0 11186 . . . . . . . . . . 11 2 ∈ ℕ0
117 nn0expcl 12736 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℕ0)
118117nn0cnd 11230 . . . . . . . . . . 11 ((2 ∈ ℕ0𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℂ)
119116, 101, 118sylancr 694 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℂ)
120115, 119mulcomd 9940 . . . . . . . . 9 (𝜑 → ((!‘𝐻) · (2↑𝐻)) = ((2↑𝐻) · (!‘𝐻)))
121109, 113, 1203eqtrd 2648 . . . . . . . 8 (𝜑 → (∏𝑘 ∈ (1...𝐻)𝑘 · ∏𝑘 ∈ (1...𝐻)2) = ((2↑𝐻) · (!‘𝐻)))
12273, 94, 1213eqtr3d 2652 . . . . . . 7 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑘 · 2) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
12366, 122eqtrd 2644 . . . . . 6 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2)) = ((2↑𝐻) · (!‘𝐻)))
124123oveq2d 6565 . . . . 5 (𝜑 → ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
12522zcnd 11359 . . . . . 6 (𝜑 → ∏𝑘 ∈ (1...𝑀)(𝑅𝑘) ∈ ℂ)
12656recnd 9947 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℂ)
12760zcnd 11359 . . . . . 6 (𝜑 → ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2) ∈ ℂ)
128125, 126, 127mul12d 10124 . . . . 5 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = ((-1↑𝑁) · (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))))
129126, 119, 115mulassd 9942 . . . . 5 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) = ((-1↑𝑁) · ((2↑𝐻) · (!‘𝐻))))
130124, 128, 1293eqtr4d 2654 . . . 4 (𝜑 → (∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) = (((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)))
131130oveq1d 6564 . . 3 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · ((-1↑𝑁) · ∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑘 · 2))) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
13252, 64, 1313eqtrd 2648 . 2 (𝜑 → ((∏𝑘 ∈ (1...𝑀)(𝑅𝑘) · (∏𝑘 ∈ ((𝑀 + 1)...𝐻)(𝑅𝑘) mod 𝑃)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
1336, 48, 1323eqtrd 2648 1 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∖ cdif 3537   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  4c4 10949  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453   mod cmo 12530  ↑cexp 12722  !cfa 12922  #chash 12979  ∏cprod 14474   ∥ cdvds 14821  ℙcprime 15223 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-prm 15224 This theorem is referenced by:  gausslemma2dlem7  24898
 Copyright terms: Public domain W3C validator