Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for gausslemma2d 24899. (Contributed by AV, 5-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
Ref | Expression |
---|---|
gausslemma2dlem1 | ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | gausslemma2d.h | . . . . 5 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
3 | 1, 2 | gausslemma2dlem0b 24882 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
4 | 3 | nnnn0d 11228 | . . 3 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
5 | fprodfac 14542 | . . 3 ⊢ (𝐻 ∈ ℕ0 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (!‘𝐻) = ∏𝑙 ∈ (1...𝐻)𝑙) |
7 | id 22 | . . 3 ⊢ (𝑙 = (𝑅‘𝑘) → 𝑙 = (𝑅‘𝑘)) | |
8 | fzfid 12634 | . . 3 ⊢ (𝜑 → (1...𝐻) ∈ Fin) | |
9 | fzfi 12633 | . . . 4 ⊢ (1...𝐻) ∈ Fin | |
10 | ovex 6577 | . . . . . 6 ⊢ (𝑥 · 2) ∈ V | |
11 | ovex 6577 | . . . . . 6 ⊢ (𝑃 − (𝑥 · 2)) ∈ V | |
12 | 10, 11 | ifex 4106 | . . . . 5 ⊢ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))) ∈ V |
13 | gausslemma2d.r | . . . . 5 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
14 | 12, 13 | fnmpti 5935 | . . . 4 ⊢ 𝑅 Fn (1...𝐻) |
15 | 1, 2, 13 | gausslemma2dlem1a 24890 | . . . 4 ⊢ (𝜑 → ran 𝑅 = (1...𝐻)) |
16 | rneqdmfinf1o 8127 | . . . 4 ⊢ (((1...𝐻) ∈ Fin ∧ 𝑅 Fn (1...𝐻) ∧ ran 𝑅 = (1...𝐻)) → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) | |
17 | 9, 14, 15, 16 | mp3an12i 1420 | . . 3 ⊢ (𝜑 → 𝑅:(1...𝐻)–1-1-onto→(1...𝐻)) |
18 | eqidd 2611 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝐻)) → (𝑅‘𝑘) = (𝑅‘𝑘)) | |
19 | elfzelz 12213 | . . . . 5 ⊢ (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℤ) | |
20 | 19 | zcnd 11359 | . . . 4 ⊢ (𝑙 ∈ (1...𝐻) → 𝑙 ∈ ℂ) |
21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ (1...𝐻)) → 𝑙 ∈ ℂ) |
22 | 7, 8, 17, 18, 21 | fprodf1o 14515 | . 2 ⊢ (𝜑 → ∏𝑙 ∈ (1...𝐻)𝑙 = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
23 | 6, 22 | eqtrd 2644 | 1 ⊢ (𝜑 → (!‘𝐻) = ∏𝑘 ∈ (1...𝐻)(𝑅‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∖ cdif 3537 ifcif 4036 {csn 4125 class class class wbr 4583 ↦ cmpt 4643 ran crn 5039 Fn wfn 5799 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 Fincfn 7841 ℂcc 9813 1c1 9816 · cmul 9820 < clt 9953 − cmin 10145 / cdiv 10563 2c2 10947 ℕ0cn0 11169 ...cfz 12197 !cfa 12922 ∏cprod 14474 ℙcprime 15223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-ioo 12050 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-fac 12923 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-prod 14475 df-dvds 14822 df-prm 15224 |
This theorem is referenced by: gausslemma2dlem4 24894 |
Copyright terms: Public domain | W3C validator |