Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2d Structured version   Visualization version   GIF version

Theorem gausslemma2d 24899
 Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S={2,4,6,...,(p-1)}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 24898 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
7 eldifi 3694 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 15226 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
98nnred 10912 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
10 prmgt1 15247 . . . . . . . 8 (𝑃 ∈ ℙ → 1 < 𝑃)
119, 10jca 553 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
121, 7, 113syl 18 . . . . . 6 (𝜑 → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
13 1mod 12564 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1412, 13syl 17 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1514eqcomd 2616 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1615eqeq2d 2620 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
17 neg1z 11290 . . . . . . . . . . 11 -1 ∈ ℤ
181, 4, 2, 5gausslemma2dlem0h 24888 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
19 zexpcl 12737 . . . . . . . . . . 11 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
2017, 18, 19sylancr 694 . . . . . . . . . 10 (𝜑 → (-1↑𝑁) ∈ ℤ)
21 2nn 11062 . . . . . . . . . . . . 13 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
231, 2gausslemma2dlem0b 24882 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ ℕ)
2423nnnn0d 11228 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
2522, 24nnexpcld 12892 . . . . . . . . . . 11 (𝜑 → (2↑𝐻) ∈ ℕ)
2625nnzd 11357 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℤ)
2720, 26zmulcld 11364 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
2827zred 11358 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℝ)
29 1red 9934 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3028, 29jca 553 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
3130adantr 480 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
321gausslemma2dlem0a 24881 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3332nnrpd 11746 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
3420, 33jca 553 . . . . . . 7 (𝜑 → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
3534adantr 480 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
36 simpr 476 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
37 modmul1 12585 . . . . . 6 (((((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3831, 35, 36, 37syl3anc 1318 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3938ex 449 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
4020zcnd 11359 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4125nncnd 10913 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4240, 41, 40mul32d 10125 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4318nn0cnd 11230 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
44432timesd 11152 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4544eqcomd 2616 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4645oveq2d 6565 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
47 neg1cn 11001 . . . . . . . . . . . 12 -1 ∈ ℂ
4847a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
4948, 18, 18expaddd 12872 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
5018nn0zd 11356 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
51 m1expeven 12769 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5346, 49, 523eqtr3d 2652 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5453oveq1d 6564 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5541mulid2d 9937 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5642, 54, 553eqtrd 2648 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5756oveq1d 6564 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5840mulid2d 9937 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
5958oveq1d 6564 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
6057, 59eqeq12d 2625 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
612oveq2i 6560 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6261oveq1i 6559 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6362eqeq1i 2615 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
64 2z 11286 . . . . . . . . . 10 2 ∈ ℤ
65 lgsvalmod 24841 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6664, 1, 65sylancr 694 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6766eqcomd 2616 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6867eqeq1d 2612 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
691, 4, 2, 5gausslemma2dlem0i 24889 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7068, 69sylbid 229 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7163, 70syl5bi 231 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7260, 71sylbid 229 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7339, 72syld 46 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7416, 73sylbid 229 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
756, 74mpd 15 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ∖ cdif 3537  ifcif 4036  {csn 4125   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  4c4 10949  ℕ0cn0 11169  ℤcz 11254  ℝ+crp 11708  ...cfz 12197  ⌊cfl 12453   mod cmo 12530  ↑cexp 12722  ℙcprime 15223   /L clgs 24819 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-prod 14475  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-pc 15380  df-lgs 24820 This theorem is referenced by:  2lgs  24932
 Copyright terms: Public domain W3C validator