MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaorb Structured version   Visualization version   GIF version

Theorem gaorb 17563
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypothesis
Ref Expression
gaorb.1 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
Assertion
Ref Expression
gaorb (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
Distinct variable groups:   𝑔,,𝑥,𝑦,𝐴   𝐵,𝑔,,𝑥,𝑦   ,   ,𝑔,,𝑥,𝑦   𝑔,𝑋,,𝑥,𝑦   ,𝑌,𝑥,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑔)   𝑌(𝑔)

Proof of Theorem gaorb
StepHypRef Expression
1 oveq2 6557 . . . . . 6 (𝑥 = 𝐴 → (𝑔 𝑥) = (𝑔 𝐴))
2 eqeq12 2623 . . . . . 6 (((𝑔 𝑥) = (𝑔 𝐴) ∧ 𝑦 = 𝐵) → ((𝑔 𝑥) = 𝑦 ↔ (𝑔 𝐴) = 𝐵))
31, 2sylan 487 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑔 𝑥) = 𝑦 ↔ (𝑔 𝐴) = 𝐵))
43rexbidv 3034 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔𝑋 (𝑔 𝑥) = 𝑦 ↔ ∃𝑔𝑋 (𝑔 𝐴) = 𝐵))
5 oveq1 6556 . . . . . 6 (𝑔 = → (𝑔 𝐴) = ( 𝐴))
65eqeq1d 2612 . . . . 5 (𝑔 = → ((𝑔 𝐴) = 𝐵 ↔ ( 𝐴) = 𝐵))
76cbvrexv 3148 . . . 4 (∃𝑔𝑋 (𝑔 𝐴) = 𝐵 ↔ ∃𝑋 ( 𝐴) = 𝐵)
84, 7syl6bb 275 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔𝑋 (𝑔 𝑥) = 𝑦 ↔ ∃𝑋 ( 𝐴) = 𝐵))
9 gaorb.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
10 vex 3176 . . . . . . 7 𝑥 ∈ V
11 vex 3176 . . . . . . 7 𝑦 ∈ V
1210, 11prss 4291 . . . . . 6 ((𝑥𝑌𝑦𝑌) ↔ {𝑥, 𝑦} ⊆ 𝑌)
1312anbi1i 727 . . . . 5 (((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦))
1413opabbii 4649 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
159, 14eqtr4i 2635 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑌𝑦𝑌) ∧ ∃𝑔𝑋 (𝑔 𝑥) = 𝑦)}
168, 15brab2ga 5117 . 2 (𝐴 𝐵 ↔ ((𝐴𝑌𝐵𝑌) ∧ ∃𝑋 ( 𝐴) = 𝐵))
17 df-3an 1033 . 2 ((𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵) ↔ ((𝐴𝑌𝐵𝑌) ∧ ∃𝑋 ( 𝐴) = 𝐵))
1816, 17bitr4i 266 1 (𝐴 𝐵 ↔ (𝐴𝑌𝐵𝑌 ∧ ∃𝑋 ( 𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  wss 3540  {cpr 4127   class class class wbr 4583  {copab 4642  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-iota 5768  df-fv 5812  df-ov 6552
This theorem is referenced by:  gaorber  17564  orbsta  17569  sylow2alem1  17855  sylow2alem2  17856  sylow3lem3  17867
  Copyright terms: Public domain W3C validator