Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1st1 Structured version   Visualization version   GIF version

Theorem fzto1st1 29183
Description: Special case where the permutation defined in psgnfzto1st 29186 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
fzto1st1 (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁
Allowed substitution hint:   𝑃(𝑖)

Proof of Theorem fzto1st1
StepHypRef Expression
1 id 22 . . . . . 6 (𝐼 = 1 → 𝐼 = 1)
21ad2antrr 758 . . . . 5 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝐼 = 1)
3 simpr 476 . . . . 5 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝑖 = 1)
42, 3eqtr4d 2647 . . . 4 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖)
5 simpr 476 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖𝐼)
61ad3antrrr 762 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝐼 = 1)
75, 6breqtrd 4609 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ≤ 1)
8 simpllr 795 . . . . . . . . 9 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖𝐷)
9 psgnfzto1st.d . . . . . . . . 9 𝐷 = (1...𝑁)
108, 9syl6eleq 2698 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ (1...𝑁))
11 elfzle1 12215 . . . . . . . 8 (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖)
1210, 11syl 17 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 1 ≤ 𝑖)
13 fz1ssnn 12243 . . . . . . . . . 10 (1...𝑁) ⊆ ℕ
1413, 10sseldi 3566 . . . . . . . . 9 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ ℕ)
1514nnred 10912 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 ∈ ℝ)
16 1red 9934 . . . . . . . 8 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 1 ∈ ℝ)
1715, 16letri3d 10058 . . . . . . 7 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖)))
187, 12, 17mpbir2and 959 . . . . . 6 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → 𝑖 = 1)
19 simplr 788 . . . . . 6 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → ¬ 𝑖 = 1)
2018, 19pm2.21dd 185 . . . . 5 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖𝐼) → (𝑖 − 1) = 𝑖)
21 eqidd 2611 . . . . 5 ((((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖𝐼) → 𝑖 = 𝑖)
2220, 21ifeqda 4071 . . . 4 (((𝐼 = 1 ∧ 𝑖𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖𝐼, (𝑖 − 1), 𝑖) = 𝑖)
234, 22ifeqda 4071 . . 3 ((𝐼 = 1 ∧ 𝑖𝐷) → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = 𝑖)
2423mpteq2dva 4672 . 2 (𝐼 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))) = (𝑖𝐷𝑖))
25 psgnfzto1st.p . 2 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
26 mptresid 5375 . . 3 (𝑖𝐷𝑖) = ( I ↾ 𝐷)
2726eqcomi 2619 . 2 ( I ↾ 𝐷) = (𝑖𝐷𝑖)
2824, 25, 273eqtr4g 2669 1 (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  ifcif 4036   class class class wbr 4583  cmpt 4643   I cid 4948  cres 5040  (class class class)co 6549  1c1 9816  cle 9954  cmin 10145  cn 10897  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  fzto1st  29184  psgnfzto1st  29186
  Copyright terms: Public domain W3C validator