Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1st1 | Structured version Visualization version GIF version |
Description: Special case where the permutation defined in psgnfzto1st 29186 is the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
Ref | Expression |
---|---|
fzto1st1 | ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝐼 = 1 → 𝐼 = 1) | |
2 | 1 | ad2antrr 758 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 1) |
3 | simpr 476 | . . . . 5 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝑖 = 1) | |
4 | 2, 3 | eqtr4d 2647 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ 𝑖 = 1) → 𝐼 = 𝑖) |
5 | simpr 476 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 𝐼) | |
6 | 1 | ad3antrrr 762 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝐼 = 1) |
7 | 5, 6 | breqtrd 4609 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ≤ 1) |
8 | simpllr 795 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ 𝐷) | |
9 | psgnfzto1st.d | . . . . . . . . 9 ⊢ 𝐷 = (1...𝑁) | |
10 | 8, 9 | syl6eleq 2698 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ (1...𝑁)) |
11 | elfzle1 12215 | . . . . . . . 8 ⊢ (𝑖 ∈ (1...𝑁) → 1 ≤ 𝑖) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ≤ 𝑖) |
13 | fz1ssnn 12243 | . . . . . . . . . 10 ⊢ (1...𝑁) ⊆ ℕ | |
14 | 13, 10 | sseldi 3566 | . . . . . . . . 9 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℕ) |
15 | 14 | nnred 10912 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 ∈ ℝ) |
16 | 1red 9934 | . . . . . . . 8 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 1 ∈ ℝ) | |
17 | 15, 16 | letri3d 10058 | . . . . . . 7 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 = 1 ↔ (𝑖 ≤ 1 ∧ 1 ≤ 𝑖))) |
18 | 7, 12, 17 | mpbir2and 959 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → 𝑖 = 1) |
19 | simplr 788 | . . . . . 6 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → ¬ 𝑖 = 1) | |
20 | 18, 19 | pm2.21dd 185 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ 𝑖 ≤ 𝐼) → (𝑖 − 1) = 𝑖) |
21 | eqidd 2611 | . . . . 5 ⊢ ((((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) ∧ ¬ 𝑖 ≤ 𝐼) → 𝑖 = 𝑖) | |
22 | 20, 21 | ifeqda 4071 | . . . 4 ⊢ (((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) ∧ ¬ 𝑖 = 1) → if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖) = 𝑖) |
23 | 4, 22 | ifeqda 4071 | . . 3 ⊢ ((𝐼 = 1 ∧ 𝑖 ∈ 𝐷) → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = 𝑖) |
24 | 23 | mpteq2dva 4672 | . 2 ⊢ (𝐼 = 1 → (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) = (𝑖 ∈ 𝐷 ↦ 𝑖)) |
25 | psgnfzto1st.p | . 2 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
26 | mptresid 5375 | . . 3 ⊢ (𝑖 ∈ 𝐷 ↦ 𝑖) = ( I ↾ 𝐷) | |
27 | 26 | eqcomi 2619 | . 2 ⊢ ( I ↾ 𝐷) = (𝑖 ∈ 𝐷 ↦ 𝑖) |
28 | 24, 25, 27 | 3eqtr4g 2669 | 1 ⊢ (𝐼 = 1 → 𝑃 = ( I ↾ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ifcif 4036 class class class wbr 4583 ↦ cmpt 4643 I cid 4948 ↾ cres 5040 (class class class)co 6549 1c1 9816 ≤ cle 9954 − cmin 10145 ℕcn 10897 ...cfz 12197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-z 11255 df-uz 11564 df-fz 12198 |
This theorem is referenced by: fzto1st 29184 psgnfzto1st 29186 |
Copyright terms: Public domain | W3C validator |