Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzspl Structured version   Visualization version   GIF version

Theorem fzspl 28938
Description: Split the last element of a finite set of sequential integers. (more generic than fzsuc 12258) (Contributed by Thierry Arnoux, 7-Nov-2016.)
Assertion
Ref Expression
fzspl (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))

Proof of Theorem fzspl
StepHypRef Expression
1 eluzelz 11573 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
21zcnd 11359 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
3 1zzd 11285 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℤ)
43zcnd 11359 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 1 ∈ ℂ)
52, 4npcand 10275 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) = 𝑁)
65eleq1d 2672 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
76ibir 256 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑁 − 1) + 1) ∈ (ℤ𝑀))
8 eluzelre 11574 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
98lem1d 10836 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ≤ 𝑁)
101, 3zsubcld 11363 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
11 eluz1 11567 . . . . 5 ((𝑁 − 1) ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)))
1210, 11syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 ∈ (ℤ‘(𝑁 − 1)) ↔ (𝑁 ∈ ℤ ∧ (𝑁 − 1) ≤ 𝑁)))
131, 9, 12mpbir2and 959 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
14 fzsplit2 12237 . . 3 ((((𝑁 − 1) + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
157, 13, 14syl2anc 691 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
165oveq1d 6564 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
17 fzsn 12254 . . . . 5 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
181, 17syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁...𝑁) = {𝑁})
1916, 18eqtrd 2644 . . 3 (𝑁 ∈ (ℤ𝑀) → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
2019uneq2d 3729 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2115, 20eqtrd 2644 1 (𝑁 ∈ (ℤ𝑀) → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  cun 3538  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  1c1 9816   + caddc 9818  cle 9954  cmin 10145  cz 11254  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  fzdif2  28939  ballotlemfp1  29880
  Copyright terms: Public domain W3C validator